
Question analysis: How
Watson reads a clue

A. Lally
J. M. Prager

M. C. McCord
B. K. Boguraev
S. Patwardhan

J. Fan
P. Fodor

J. Chu-Carroll

The first stage of processing in the IBM Watsoni system is to
perform a detailed analysis of the question in order to determine
what it is asking for and how best to approach answering it. Question
analysis uses Watson’s parsing and semantic analysis capabilities:
a deep Slot Grammar parser, a named entity recognizer, a
co-reference resolution component, and a relation extraction
component. We apply numerous detection rules and classifiers using
features from this analysis to detect critical elements of the question,
including: 1) the part of the question that is a reference to the
answer (the focus); 2) terms in the question that indicate what type
of entity is being asked for (lexical answer types); 3) a classification
of the question into one or more of several broad types; and
4) elements of the question that play particular roles that may require
special handling, for example, nested subquestions that must be
separately answered. We describe how these elements are detected
and evaluate the impact of accurate detection on our end-to-end
question-answering system accuracy.

Introduction
The question-answering process in IBM Watson*, like that
of most other question-answering systems, begins with a
question analysis phase that attempts to determine what the
question is asking for and how best to approach answering
it. Broadly speaking, question analysis receives as input
the unstructured text question and identifies syntactic and
semantic elements of the question, which are encoded
as structured information that is later used by the other
components of Watson. Nearly all of Watson’s components
depend in some way on the information produced by
question analysis.
Question analysis is built on a foundation of

general-purpose parsing and semantic analysis components.
Although these components are largely domain-independent,
some tuning to the special locutions of Jeopardy!**
questions has been done, which we describe in this
paper.
Based on this foundation, we apply numerous detection

rules and classifiers to identify several critical elements
of the question. There are a variety of such elements, each
of which is vital to different parts of Watson’s processing.

The most important elements are the focus, lexical answer
types (LATs), Question Classification, and Question Sections
(QSections). The definitions of these terms refer to the
following example Jeopardy! question:

POETS & POETRY: He was a bank clerk in the
Yukon before he published BSongs of a Sourdough[
in 1907.

The focus is the part of the question that is a reference
to the answer. In the example above, the focus is Bhe[.
(In the case where multiple words refer to the answer, it is
generally sufficient to detect one focus and then apply
general-purpose co-reference resolution to find the other
references.) The focus is used, for example, by algorithms
that attempt to align the question with a potential supporting
passage [1]; for proper alignment, the answer in the passage
should align with the focus in the question.
LATs are terms in the question that indicate what type

of entity is being asked for. The headword of the focus is
generally a LAT, but questions often contain additional
LATs, and in the Jeopardy! domain, categories are an
additional source of LATs. In the example, LATs are Bhe[,
Bclerk[, and Bpoet[. LATs are used by Watson’s type
coercion components [2] to determine whether a candidate
answer is an instance of the answer types.

�Copyright 2012 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without
alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied by any means or distributed

royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

A. LALLY ET AL. 2 : 1IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

0018-8646/12/$5.00 B 2012 IBM

Digital Object Identifier: 10.1147/JRD.2012.2184637

Question Classification identifies the question as
belonging to one or more of several broad types. The
example question is of the most common class, Factoid,
but many Jeopardy! questions are of other classes such as
Definition, Multiple-Choice, Puzzle, Common Bonds,
Fill-in-the-Blanks, and Abbreviation. These Question Classes
(QClasses) are used to tune the question-answering process
by invoking different answering techniques [3], different
machine learning models [4], or both.
QSections are question fragments whose interpretation

requires special handling. Some of the most important uses
of QSections are to identify lexical constraints on the answer
(e.g., B4-letter[or B3-word[) and to decompose a question
into multiple subquestions [5].
Most of our rule-based question analysis components are

implemented in Prolog [6, 7], a well-established standard
for representing pattern-matching rules. Our implementation
can analyze a question in a fraction of a second, which is
necessary to be competitive at the Jeopardy! task.
Nearly all other question-answering systems include

some form of question analysis. A large number of these
systems have been developed under the influence of
organized evaluation efforts such as TREC/TAC (Text
REtrieval Conference/Text Analytics Conference) [8] and
CLEF (Cross-Language Evaluation Forum) [9]. They have
a strong emphasis on factoid questions such as BWhich was
the first movie that James Dean was in?[and BWhat is the
population of Japan?[However, Jeopardy! questions are
often more complex than these typically studied factoid
questions; thus, accurate question analysis is more difficult
[10]. In addition, Jeopardy! questions are organized into
categories, and determining how to make use of the name
of the category is an important and challenging task that does
not exist in prior work.
The remainder of this paper is structured as follows. In

the next section, we summarize the parsing and semantic
analysis capabilities that provide the foundation for question
analysis, and we discuss how they were adapted to the unique
challenges presented by Jeopardy! questions. Next, we
explain how we implemented rule-based portions of question
analysis using Prolog. Then, we discuss focus and LAT
detection in more detail, evaluate the accuracy of our
implementation, and evaluate its impact on our end-to-end
question-answering performance. This is followed by a
similar discussion and evaluation of Question Classification
and QSection detection. Finally, we compare Watson’s
question analysis with that of other question-answering
systems and conclude with a summary of this paper.

Foundation of question analysis

Parsing and semantic analysis
Watson’s parsing and semantic analysis suite is composed
of the Slot Grammar parser ESG (English Slot Grammar)

with an associated predicate-argument structure (PAS)
builder [11], a named entity recognizer (NER), a
co-reference resolution component, and a relation extraction
component [12].
ESG is used to parse each sentence in a question into

a tree that shows both surface structure and deep logical
structure. Each tree node has attached to it: 1) a word or a
multiword term with an associated predicate and its logical
arguments; 2) a list of features, some morphosyntactic,
others semantic; and 3) the left and right modifiers of the
node, each with the slot it fills. The deep structure lies in
the predicates and their arguments. The predicate arguments
are other tree nodes, but they may come from remote
positions of the tree or may be the active-form (logical)
arguments in passives. Such predications are useful for
building logical forms and working with standardized
relations associated with the predicates. The PAS builder
produces a simplification of the ESG parse. In the PAS,
parses with small variations in syntax are mapped to a
common form, which assists in subsequent pattern matching.
In the example question from the introduction, parsing

and semantic analysis identify, among many other things,
predications publish(e1, he, ‘‘Songs of a
Sourdough’’) and in(e2, e1, 1907), the latter saying
that publishing event e1 occurred in 1907. It also resolves
the co-reference of the two occurrences of Bhe[and Bclerk[,
identifies BYukon[as a geopolitical entity and BSongs of a
Sourdough[as a composition, and extracts relations such
as authorOf(focus, ‘‘Songs of a Sourdough’’)
and temporalLink(publish(. . .), 1907).

Question analysis adaptations
On the Jeopardy! show, questions are displayed in all
uppercase, and this is exactly how Watson received them.
Although this does not present much trouble to the human
contestants, it does present challenges for a computer.
Mixed case provides information, for example, to indicate
proper names or titles. Our existing parsing and semantic
analysis capabilities were developed for mixed case and
heavily relied on these cues. To address this problem, we
apply a statistical true-caser component that has been trained
on many thousands of correctly cased example phrases [13].
ESG has been adapted in several ways to the special

locutions of Jeopardy! questions. In place of Bwh[pronouns,
Jeopardy! questions typically use Bthis/these[and Bhe/she/
it[, which sometimes leads to constructions that are very
rare in English, as in BA stock that is a low risk investment
is a blue this[. The parser was adapted to handle these. In
addition, a fair number of Jeopardy! questions consist only
of noun phrases. Although ESG had been developed to
handle text segments of any phrase type (not just complete
sentences), noun phrases occur much more frequently
in Jeopardy! questions than in average English; hence,
modifications were made to the parser to prefer noun phrases

2 : 2 A. LALLY ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

under certain conditions. For example, in the noun-phrase
question, BNumber of poems Emily Dickinson gave
permission to publish during her lifetime,[early versions
of ESG preferred an awkward verb-phrase analysis with
Bpublish[as the main verb; this has been corrected since.
In spite of these adaptations, care was taken not to degrade
parsing of normal English. This is done in part by use of
switches for the parser that are turned on only when parsing
Jeopardy! questions.
Our co-reference component also required adaptation

because Jeopardy! questions often include an unbound
pronoun as an indicator of the focus, which is not expected
in normal text. For example, in the question, BAstronaut
Dave Bowman is brought back to life in his recent novel
3001: The Final Odyssey,[the Bhis[refers to the answer
(Arthur C. Clarke), not Dave Bowman. We addressed
this by running focus finding before co-reference
resolution and adapting our co-reference processing to
be focus-aware.

Special-purpose relations
In addition to being applied to general text [12], our relation
extraction component has also been adapted in two ways
to meet the specific characteristics and idiosyncrasies of
Jeopardy! questions. On the one hand, special-purpose
relations of particular relevance to Jeopardy! are identified,
and relation detectors for them are developed. On the
other hand, some of the same underlying pattern-matching
mechanisms that are used for relation detection can also be
used to identify certain (non-relational) aspects of Jeopardy!
questions, which are subsequently used in Question
Classification and special question processing.
Special-purpose relations address Jeopardy!-specific

locutions, which express relationships common enough in the

genre of Jeopardy! questions, but not necessarily frequent
enough to warrant the development of relation extractors
situated within the parsing and semantic analysis suite
of relations. Their frequency in Jeopardy!, however, is
sufficiently high that detecting and exposing them can make
a difference to subsequent components. Such relations
include (see example questions in Table 1) the following:
alternate names for the focus element, temporal arithmetic in
questions, and geospatial relations. We also detect relations
called rdfTriple that identify individual facts within a
complex question and enable a general approach for
checking whether these facts are true.
For certain classes of questions, we deploy a separate line

of processing using semantic frames. Broadly speaking, a
frame gathers typical and characteristic properties of an entity
or an event: examples of frames we use for Jeopardy!
question answering include books, presidents, countries/
states, and awards (e.g., Bwho was awarded/won what,
for what, and when[). The notion is that, by knowing
the values and the semantics of some of a frame’s slots,
domain-specific reasoning could lead to the value of
the slot element that is the focus of the question [14].
The deep semantic relations framework is well suited for
detecting and instantiating slot values, and an adaptation for
that purpose is a part of the semantic frame-based answering
pipeline. As an example, the question BHis 2 acting
Oscars have been awarded for playing a tough cop in
1971 and a brutal sheriff in 1992[leads to the identification
of the following relations: awardType(Oscar),
awardWinner(focus), awardRole(tough_cop),
and awardCategory(acting). These are then used by
a general frame instantiation mechanism (this example
would lead to two frame instances, identical in all but the
awardRole slot).

Table 1 Relations in Jeopardy! questions.

A. LALLY ET AL. 2 : 3IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

Given that the machinery and methods for pattern-driven
relation detection are, fundamentally, developed for pattern
matching over PAS configurations, they can be directly
applied to a task different from relational analysis:
identification of QSections (i.e., text segments in questions
associated with certain question characteristics), which
can also be used to influence Question Classification.
For example, see the discussion of abbreviation question
detection and question decomposition in the section
BQuestion Classification and QSection detection[, below.

Prolog implementation of rules
As in most of Watson, question analysis is implemented as a
pipeline of components assembled using the Unstructured
Information Management Architecture (UIMA) [15]. Most
of the question analysis tasks in the Watson project are
implemented as rules over the PAS and various external
databases such as WordNet** [16]. We required a language
in which we could conveniently express a large number of
rules over a dependency-based parse, including matching
over long-distance relationships. We found that Prolog was
the ideal choice for the language because of its simplicity and
expressiveness.
Prolog was a natural fit for integration with UIMA,

as shown in Figure 1. In UIMA, the common analysis
structure (CAS) is a dynamic data structure that contains

unstructured data (i.e., data whose intended meaning is still
to be inferred) and structured information inferred from
this data, encoded as feature structures. The translation of
the CAS to Prolog facts is straightforward. Each CAS feature
structure is assigned a unique integer ID. Each feature
(property) of that feature structure becomes a fact of the
form feature_name(id, value). If the value of a
feature is another feature structure, then the ID of the target
feature structure is used in the value slot of the Prolog
fact. Array values are represented as Prolog lists. Any new
facts that result from querying Prolog rules are asserted back
into show the CAS as new feature structures and will be
subsequently passed to annotators after the current one in the
UIMA pipeline.
For example, the PAS nodes produced by the parsing

and semantic analysis annotators are represented as Prolog
facts such as the following (the numbers representing unique
identifiers for PAS nodes):

lemma(1, ‘‘he’’).
partOfSpeech(1,pronoun).
lemma(2, ‘‘publish’’).
partOfSpeech(2,verb).
lemma(3,‘‘Songs of a Sourdough’’).
partOfSpeech(3,noun).
subject(2,1).
object(2,3).

Figure 1

UIMA Prolog interface specialized for focus and LAT detection. (Figure used with permission from P. Fodor, A. Lally, and D. Ferrucci,
BThe Prolog Interface to the Unstructured Information Management Architecture,[Computing Research Repository, 2008;
available: http://arxiv.org/abs/0809.0680v1.)

2 : 4 A. LALLY ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

Such facts were consulted into a Prolog system, and several
rule sets were executed to detect the focus of the question,
the LAT, and several relations between the elements
of the parse. For example, a simplified rule for detecting
the authorOf relation can be written in Prolog
as follows:

authorOf(Author, Composition) :-
createVerb(Verb),
subject(Verb, Author),
author(Author),
object(Verb, Composition),
composition(Composition).-

createVerb(Verb) :-
partOfSpeech(Verb, verb),
lemma(Verb, VerbLemma),
[‘‘write’’, ‘‘publish’’, . . .].

The author and composition predicates, not shown,
apply constraints on the nodes (i.e., Bhe[and BSongs of a
Sourdough[, respectively) to rule out nodes that are not valid
fillers for the author and composition roles in the relation.

This rule, applied to the example, results in the
new fact authorOf(1, 3), which is recorded and passed
to downstream components in the Watson pipeline.

Prior to our decision to use Prolog for this task, we
had implemented custom pattern-matching frameworks over
parses. These frameworks ended up replicating some
of the features of Prolog but lacked the full feature set of
Prolog or the efficiency of a good Prolog implementation.
Using Prolog for this task has significantly improved
our productivity in developing new pattern-matching
rules and has delivered the execution efficiency necessary
to be competitive in a Jeopardy! game. We have
implemented different Prolog rule sets for shallow
and deep relation extraction [12], focus detection, LAT
detection, Question Classification, and QSection detection.
In all, these rule sets consist of more than 6,000 Prolog
clauses.

Focus and LAT detection
We begin our discussion of focus and LAT detection
by presenting a set of baseline patterns that are readily
observable from Jeopardy! questions and that are simple
to implement. We then show where this simple baseline is
inadequate and demonstrate improvements that we havemade.

Baseline focus and LAT detection
The baseline focus detection implementation consists of
the following patterns, in order of their priority, with ties
broken by taking the lexically first. Each is illustrated by an

example, where the italicized phrase is the focus and its
headword is in bold.

• A noun phrase with determiner Bthis[or Bthese[:
THEATRE: A new play based on this Sir Arthur Conan
Doyle canine classic opened on the London stage in 2007.

• BThis[or Bthese[as a pronoun:
‘88: In April 1988, Northwest became the first U.S. air
carrier to ban this on all domestic flights.

• When the question is a noun phrase, we conventionally
label the entire question as the focus:
AMERICAN LIT: Number of poems Emily Dickinson
gave permission to publish during her lifetime.

• One of the pronouns Bhe/she/his/her/him/hers[:
OUT WEST: She joined Buffalo Bill Cody’s Wild West
Show after meeting him at the Cotton Expo in
New Orleans.

• One of the pronouns Bit/they/them/its/their[:
ME BFIRST[!: It forbids Congress from interfering with
a citizen’s freedom of religion, speech, assembly, or
petition.

• The pronoun Bone[:
12-LETTER WORDS: Leavenworth, established
in 1895, is a federal one.

When none of the above applies, the question may have
no focus,

MOVIE TITLE PAIRS: 1999: Jodie Foster & Chow
Yun-Fat.

Although these rules are straightforward, the requirements
they impose on the parser may be challenging. It is critical
for the parser to correctly attach the determiner Bthis[to
its headword; note that as in BThis Sir Arthur Conan
Doyle canine classic,[the headword is often not the word
immediately following Bthis.[It is also very important for
the parser to correctly distinguish a noun-phrase question
from a verb phrase. As previously noted, we have made some
improvements to ESG in this regard.
The baseline LAT detection approach generally chooses

the focus headword as the only LAT, with the only
exceptions as follows (focus in italics and LAT in bold):

• If the focus is a conjunction, extract the conjuncts:
HENRY VIII: Henry destroyed the Canterbury Cathedral
Tomb of this saint and chancellor of Henry II.

• BhFocusi of X[. extract LAT X when hFocusi is any
of one/name/type/kind:
HERE, PIGGY, PIGGY, PIGGY: Many a mom has
compared her kid’smessy room to this kind of hog enclosure.

• BhFocusi for X[. extract LAT X when hFocusi is any
of name/word/term:
COMPANY NAME ORIGINS: James Church chose

A. LALLY ET AL. 2 : 5IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

this name for his product because the symbols of
the god Vulcan represented power.

• If no focus was detected and the category is a noun phase,
take headword of the category as LAT:
HEAVY METAL BANDS: BSeek & Destroy[, BNothing
Else Matters[, BEnter Sandman[.

Improving detection within a question
The simple baseline rules are reasonably precise, but they do
make some mistakes, and there are many useful LATs that
are not detected. In this section, we present some of the
common failure cases that we have addressed. At this point,
we consider only how to use the portion of the question
excluding the category; the category is addressed in the next
section. The following examples all represent cases where
the baseline patterns fail:

1) PAIRS: An April 1997 auction of Clyde Barrow’s
belongings raised money to fund moving his grave next
to hers.

2) FATHER TIME (400): On Dec. 13, 1961, Father Time
caught up with this 101-year-old artist with a relative
in her nickname.

3) CRIME: Cutpurse is an old-time word for this type of
crowd-working criminal.

4) THE FUNNIES: BMarmaduke’’ is this breed of dog.
5) ISLAND HOPPING: Although most Indonesians are

Muslims, this is the predominant religion on Bali.
6) I FORGET: Mythical rivers of Hades include the

Styx and this one from which the dead drank to forget
their lives.

7) FAMOUS AMERICANS: Although he made no
campaign speeches, he was elected president in 1868
by a wide electoral margin.

Example 1 illustrates a common focus detection problem
of selecting the correct pronoun. The simple baseline rule
selects the lexically first but incorrect focus Bhis[. To select
the correct focus, we try to determine which pronouns
are co-referential with named entities in the question
(e.g., Bhis[to BClyde Barrow[), and then choose as the
focus the pronoun that is not bound to any entity. Once
the focus is detected, we can apply our general-purpose
anaphora resolution component. This can help us find
pronoun LATs that indicate the gender of the answer,
for instance, in example 2.
When the focus expresses a subclass relationship

(examples 3 and 4), we mark the superclass from the
embedded prepositional phrase as the LAT.
LATs are frequently indicated by different types of

relationships in which the focus participates, such as
co-reference (example 5), expressions of set membership
(example 6), or roles played by the focus (example 7).
A further difficulty in LAT detection is determining

whether the LAT should be a single word or a multiword
term. In most cases, we consider the LAT to be a single
word, excluding any modifiers. For example, if a question’s
focus were Bthis U.S. president,[we would say that the
LAT is Bpresident.[Modifiers of the LAT may be taken
into account by some of the type coercion components, but
they are not considered part of the LAT. However, this
can be wrong in some cases (consider, if the question were
Bthis vice president,[we would not want to extract the
LAT Bpresident[). Therefore, we treat a multiword term as
a LAT when it does not represent a subtype of its headword
(as in Bvice president[) or when the modifier changes the
sense of the headword to an infrequent sense (e.g., Bprime
minister[can be a LAT because, although it is a subtype
of a sense of Bminister[, it is not a frequent sense, at least
in the United States).

Extracting LATs from the category
One of the more difficult challenges is to detect LATs
that occur in the category. Jeopardy! categories sometimes
but not always express LATs, and it is not always obvious
which word in the category might represent a LAT. There
are a few category patterns that precisely determine the LAT
(e.g., BNAME THE X[or BWHO’S THE X?[), but these
cover a very small number of questions.
In the general case, we observe that category words

are likely to be LATs if they meet three conditions:
they refer to types of entities (e.g., Bcountries[rather
than Bgeography[), the entity type is consistent with the
question LATs (if any), and there are not any mentions
or instances of that type in the question. Consider the
following examples:

8) BRITISH MONARCHS: She had extensive hair loss by
the age of 31.

9) ATTORNEYS GENERAL: Edmund Randolph helped
draft and ratify the Constitution before becoming
this man’s Attorney General.

10) ACTRESSES’ FIRST FILMS: Oklahoma!
11) U.S. CITIES: It’s home to the University of Kentucky

and to horseracing’s Toyota Blue Grass Stakes.
12) U.S. CITIES: St. Petersburg is home to Florida’s annual

tournament in this game popular on shipdeck.

In example 8, the category contains the LAT Bmonarch,[
which expresses an entity type that is compatible with the
LAT Bshe[. Example 9 has a very similar form, but BAttorney
General[is not a LAT. The fact that the category has a
mention in the question makes it much less likely to be
a LAT.
In example 10, looking just at the category, both Bactress[

and Bfilm[seem like potential LATs. If we can identify
that the question contains a film (or that it does not contain an
actress), we can determine that Bactress[is the LAT.

2 : 6 A. LALLY ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

Examples 11 and 12 have the same category, but only in
example 11 does it express a LAT. In example 12, Bcity[
is not compatible with the LAT Bgame,[and the presence
of an instance of a city in the question lowers the likelihood
that Bcity[would be a LAT rather than a topic.

Estimating LAT confidence
The LAT detection rules, particularly those that operate on
the category, can produce false positives. Since some LAT
detection rules are more reliable than others, we would
like to have a confidence value in each LAT that can be
used to weight each LAT appropriately during answer
scoring. To accomplish this, we trained a logistic regression
classifier using a manually annotated LAT gold standard.
The classifier uses the focus and LAT rules that have
fired as features, along with other features from the parse,
NER, and the prior probability of a particular word being
a LAT. Low-confidence LATs are filtered to improve
precision.

Learning LATs from previous questions
in a category
Finally, during the play of a game, Watson can adjust
its category LAT detection by learning from prior (question,
answer) pairs that have been revealed within the category.
For each word in the category, Watson hypothesizes that that
word could have been a LAT and checks whether correct
answers to prior questions have been instances of that type.
We have precomputed statistics over large numbers of
historical Jeopardy! questions that tell us the probability that
a category word that has been used as a LAT on a given
number of prior questions will continue to be used as a
LAT in subsequent questions. These probabilities were
computed separately for the case where a LAT detection
rule had selected the category word and the case where
no rule applied. We set the LAT confidence value of the
category word to be equal to this probability estimate,
overriding the value that was produced by the logistic
regression classifier. As mentioned, low-confidence LATs
are filtered. This procedure can infer entirely new LATs
that would not have been detected by the rules.
For example, one of the sparring matches that Watson

played contained the category BCELEBRATIONS OF
THE MONTH,[consisting of the following questions:

BD-Day Anniversary and Magna Carta Day[
BNational Philanthropy Day and All Souls’ Day[
BNational Teacher Day and Kentucky Derby Day[
BAdministrative Professionals Day and National CPAs
Goof-Off Day[
BNational Magic Day and Nevada Admission Day.[

Upon seeing the first question in the category, Watson
incorrectly detected Bday[as the LAT and did not interpret

the category as expressing a LAT. After that clue was played,
Watson was informed of the correct answer (BJune[) and
determined that this matched the category word Bmonth[.
This increased the probability that Bmonth[would be a LAT
for subsequent clues in the category, although it was still
far from certain. As Watson saw more correct answers within
the category, this probability increased and Watson was
able to produce months as its top answers to the later clues in
the category.

Evaluation
We compared the accuracy of LAT detection (and, indirectly,
focus detection, which it depends on) between the baseline
rules (from the BBaseline focus and LAT detection[section
above) and the complete Watson system (with all of the
improvements we have just presented). For the evaluation,
we used a manually annotated set of 9,128 questions. We
used ten-fold cross validation to train and evaluate our
statistical LAT classifier. The results are shown in Table 2.
The metrics are defined as follows:

Precision ¼ #Correctly Detected LATs

#Detected LATs

Recall ¼ #Correctly Detected LATs

#LATs in Manually Annotated Set

F1 ¼
2 ðPrecisionÞ ðRecallÞ
Precisionþ Recall

Per Question Recall

¼ #Questions with at least one correctly detected LAT

#Questions with at least one manually annotated LAT
:

The results show that the baseline patterns are reasonably
precise but are severely lacking in recall. Much of the
work on Watson’s focus and LAT detection has been
directed toward improving the recall without sacrificing
precision. The improvement in the Per Question Recall
indicates that, in 6.5% of Jeopardy! questions, Watson
detects a correct LAT that was not found by the baseline
patterns. We expect that this will greatly improve Watson’s
chances of coming up with the correct answer to those
questions.
One common class of error occurred when the human

annotator chose a multiword term as a LAT, but Watson
chose just the headword. This decision can be somewhat
subjective according to our definition of LAT. Examples of

Table 2 LAT detection evaluation.

A. LALLY ET AL. 2 : 7IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

disagreements were Bsinger[versus Blead singer[and Bbody[
versus Blegislative body[. If the evaluation is relaxed so
that a LAT is considered correct if it matches one of
the words within a multiword gold-standard LAT,
Watson’s F1 score increases by 0.02 and the baseline’s
increases by 0.01.
To directly measure the impact of accurate LAT detection

(and, indirectly, that of focus detection) on the end-to-end
question-answering system, we created a configuration
of the Watson system in which the focus and LAT detection
is replaced by the baseline patterns. These different system
configurations are evaluated on an unseen test set of
roughly 3,500 questions. The results are shown in Table 3.
Comparing the second row (baseline focus and LAT
detection) with the fourth row (Watson’s full focus and
LAT detection) shows that with its full focus and LAT
detection, Watson answers an additional 3.5% of questions
correctly. This improvement is statistically significant by
McNemar’s test [17] with p G 0:01.

Question Classification and QSection detection
The Jeopardy! domain includes a wide variety of kinds
of questions, and we have found that a one-size-fits-all
approach to answering them is not ideal. In addition, some
parts of a question may play special roles and can benefit
from specialized handling. One of the important jobs of
question analysis is to identify these QClasses and
QSections.

Question Classification
We have defined a set of QClasses to guide processing after
question analysis. In some cases, a question may
not be answerable at all by our default factoid answering
approaches, and classification of the question into a
specialized type is essential, for example:

13) BEFORE & AFTER: 13th Century Venetian traveler
who’s a Ralph Lauren short sleeve top with a collar.

14) THE SOUTHERNMOST CAPITAL CITY: Helsinki,
Moscow, Bucharest.

In example 13, the correct answer (BMarco Polo shirt[)
will never even appear in our sources; therefore, our

basic factoid question-answering approaches will never
succeed. In example 14, the default factoid system would
always fail because the correct answer (BBucharest[) appears
in the question, which, for most questions, we do not allow.
Other classes of questions may not be impossible for

the factoid approaches to answer but may still benefit from
some processing that is not appropriate for general question
types. Table 4 lists Watson’s QClasses along with their
frequency, manually measured over a set of approximately
3,500 Jeopardy! questions.
We detect QClasses using a variety of techniques. The

recognizers are independent of one another; hence, more than
one QClass can be potentially associated with any particular
question. There are some pairwise incompatibilities, which
are enforced by a QClassConsolidator process that runs
after recognition and removes the less preferred of any
mutually inconsistent QClass pair.
The QClasses PUZZLE, BOND, FITB (Fill-in-the blank),

and BOND, and MULTIPLE-CHOICE have fairly standard
representations in Jeopardy! and are detected primarily
by regular expressions. Presumably, because humans
themselves require a signal in order to use different
answering techniques, PUZZLE and BOND questions are
almost always indicated by a familiar phrase (e.g., BBEFORE
& AFTER[, BANAGRAMS[, and BCOMMON BONDS[),
possibly with a domain-indicating modifier, in the
category alone. Simple regular expression patterns are
used to detect these and observed and anticipated synonyms
(such as BJUMBLED[or BSCRAMBLED[for anagrams).
FITB is detected by regular expressions over the question
text, which match either underscores appearing in the
question or (more typically) quoted phrases adjacent to the
focus. MULTIPLE-CHOICE is detected either when the
category provides a sequence of (usually three) items and
the question provides a relation used to select the correct
answer, or vice versa. More details on these Bspecial[
question types are provided in [3].
Other QClasses do not have such standard representations

and are identified by syntactic rules that match over the
PAS. The ETYMOLOGY QClass is triggered by the pattern
BFrom hlanguagei for hphrasei, hfocusi . . .,[as well as many
other similar patterns. The VERB QClass is detected by
cases where the focus is the object of Bdo[(as shown in the
example in Table 4) or in definition-style questions involving
an infinitive (e.g., BThis 7-letter word means to presage or
forebode[). The TRANSLATION QClass can be triggered
either by a pattern over the question PAS (Bhfocusi is
hlanguagei for hphrasei[) or cases where the question is just
a simple phrase with no focus and the category specifies a
language to translate to or from.
The QClasses NUMBER and DATE are dependent only

on the LAT and are detected when the LAT is a member
of a manually created list of LATs that have numbers or
dates as instances.

Table 3 Impact on question-answering system.

2 : 8 A. LALLY ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

Table 4 QClasses.

A. LALLY ET AL. 2 : 9IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

The DEFINITION QClass is difficult to identify with great
accuracy, but this is compensated for by the fact that our
standard question-answering approach is reasonably good at
handling these questions; hence, detection accuracy is not as
critical as it is for the other QClasses. Definition questions are
identified by key phrases such as Bis the word for[and
Bmeans[, as well as a small number of recurring category
types such as BCROSSWORD CLUES[.
The CATEGORY-RELATION QClass is detected when

the question text is just a single entity or a short list of entities
(there is no focus detected). This QClass is suppressed if
a more specific QClass applies.
Of particular interest is the detection of the

ABBREVIATION QClass, which applies to questions in
which the expansion of an abbreviation is sought. Consider
the following examples:

15) CHEWING THE BFAT[: Abbreviated CFS, this
medical condition is called Bthe thief of vitality.[

16) ABBREV.: On a tombstone: RIP.
17) YANKEE MAGAZINE: An article called BA Tip of

the Hat to Danbury,[in this state, tells how JFK helped
kill an industry with his bareheaded ways.

Watson annotates the examples in 15 and 16 with the
ABBREVIATION QClass and identifies BCFS[and BRIP[
as the abbreviations to be expanded, respectively. In
example 17, JFK is also recognized as an abbreviated term;
however, this question is not annotated with the
ABBREVIATION QClass. This distinction is crucial as the
expansion of any abbreviated term can be either the correct
answer (examples 15 and 16) or a very stupid answer
(example 17).
We recognize the ABBREVIATION QClass in a way

that is similar to our LAT detection approach: rule-based
recognition combined with a statistical classifier that makes
the final decision primarily on the basis of the learned
reliability of each rule. The rule-based recognizer includes
regular expression patterns that capture canonical ways that
abbreviation questions may be expressed in Jeopardy!
(example 16), as well as rules that match against the
PAS of the question, to capture more complex syntactic
variations for questions that seek abbreviation expansions
(example 15). We train a logistic regression model, in which
each of these rules is used as a binary feature, along with
features that indicate the number of previously seen
abbreviation questions in the same category. Questions that
are classified in the ABBREVIATION QClass employ a
special solving technique to produce expansions as candidate
answers, as described in [3].

QSections
A QSection is an annotation made over a contiguous span
of text in the question (occasionally, in the category) to

represent a function that the text plays in the interpretation
of the question. Like QClasses, QSections are identified
either by Prolog rules over the PAS or by regular expressions
over the text. In some cases, QClasses and QSections are
recognized and output by the same component because
their existence and function are codependent.
Altogether, many types of QSections are recognized.

Some of the more important are as follows.

• LexicalConstraintVA phrase such as Bthis 4-letter word[
that should not be used in a query but is critical for
selecting the correct answer.

• AbbreviationVA term in a question that is identified as
an abbreviation, which is associated with its possible
expansions. For questions of QClass ABBREVIATION,
one of these Abbreviation QSections is further identified
as the abbreviation whose expansion is sought.

• SubQuestionSpanVWhen a question can be decomposed
into two or more disjoint sections that individually
indicate or contribute to the answer, these sections are
marked as SubQuestionSpans. Some of the more
complex Factoids, as well as all BBEFORE & AFTER[s,
most BRHYME TIME[s, and double definitions such
as the first DEFINITION example in Table 4, get
SubQuestionSpan annotations [3, 5].

• McAnswerVThe (usually three) strings that represent
the answer choices in a multiple-choice question are
marked with a McAnswer QSection.

• FITBVThis annotates the string that adjoins the focus
term (i.e., the text that forms the term or expression
that the focus completes).

Evaluation
We evaluated the accuracy of our Question Classification
against a manually annotated gold standard of approximately
3,500 questions. The results are shown in Table 5. Over
all the QClasses, we achieved an F measure of 0.637.
Individually, many of the QClasses have a much higher F
measure. The class with the lowest detection F measure
is DEFINITION, perhaps because it is one of the more
subjective classifications. Errors in DEFINITION detection
often do not hurt, however, because definition questions
and factoid questions are similar enough that they can be
often correctly answered even with an incorrect QClass
identification. Also of note is that the PUZZLE class has low
recall because there are many infrequently occurring types
of puzzles for which it was not worthwhile to develop
specialized detection mechanisms.
To measure the impact on the end-to-end

question-answering system, we compared the full Watson
system to a configuration that had the QClass and QSection
detection entirely removed (baseline system). The results
are shown in Table 3. Comparing the third and fourth rows
shows that with its full QClass and QSection detection,

2 : 10 A. LALLY ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

Watson answers an additional 2.9% of questions correctly.
This difference is statistically significant by McNemar’s
test with p G 0:01.

Related work
It is common in question-answering systems to represent
a question as a graph either of syntactic relations in a
parse or PAS [18–20] or of deep semantic relations in
a handcrafted ontology [21–23]. Watson uses both
approaches.
The concept of a question focus has been used in prior

work [24] but often does not have a clear definition.
The most comprehensive discussion of focus detection can
be found in Bunescu and Huang [25], who define a focus
as Bthe set of all maximal noun phrases in the question that
co-refer with the answer.[They also state that these focus
words can be used to influence the selection of the answer
type. They do not have a separate concept of a LAT and,
thus, do not mention a way for a word to not be a focus but
still influence the answer type. We have found it essential
to make the focus/LAT distinction because of Watson’s
heterogeneous set of answer-scoring algorithms, some
of which attempt to align an answer in a passage with
the focus in the question, and others that use the LAT to
determine whether the candidate answer is of the correct
type. For example, in the question BHe was elected president
in 1868,[the word Bpresident[is clearly a LAT, but we
do not want to consider it a focus since it would be wrong
to align it with an answer in a passage (we do not expect
the answer to this question to appear as the complement
of Belect[).
Most other question-answering systems use question

analysis to identify a semantic answer type from a fixed
ontology of known types [19, 26–29]. Because of the very
broad domain that Jeopardy! questions cover, this is not

practical. Instead, we employ a separation of concerns
where question analysis identifies the LAT, but the type
coercion components determine semantics. The work that
is perhaps most similar to our concept of LAT is that
of Pinchak and Lin [30], who directly use the words in the
question for answer typing, although they have one specific
algorithm for evaluating candidate answers on the basis
of how often they appear in the same context in the corpus,
whereas Watson identifies LATs independently of how
they are used and then applies a suite of type coercion
algorithms [2].
In prior work, there is often not a clear distinction between

Question Classification and answer type detection. For
example, some systems [26, 27] have QClasses for
abbreviation expansion (which we also consider a QClass),
as well as various types of Human and Entity (which we
cover under LAT detection). We treat these concepts
separately since a question such as BThis television
network is abbreviated ABC[is an abbreviation expansion
question that also specifies the semantic type of the entity.
Question Classification and QSection detection to the
extent done in Watson has not been the subject of previous
work, mainly because the TREC question sets [8] used
by most of the prior question-answering work do not
exhibit the wide variety of QClasses that Jeopardy! does [10].

Conclusion
In this paper, we have presented the processes by which
Watson analyzes a question. Question analysis is built
on a foundation of general-purpose parsing and semantic
analysis, although the style of Jeopardy! questions and
the requirements of question analysis have necessitated
some adaptation of those capabilities. Question analysis is
primarily concerned with the identification of four critical
elements, namely, focus, LAT, Question Classification, and

Table 5 Question Classification evaluation.

A. LALLY ET AL. 2 : 11IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

QSection. This is a more comprehensive view of question
analysis than that covered by prior work, which includes only
some of these elements and often conflates them.
Many of the requirements of question analysis are handled

by pattern matching over data structures from parsing and
semantic analysis. We chose to use Prolog for this task since
it is a well-established standard that is very flexible and
well suited for representing pattern-matching rules. Our
implementation is efficient enough to analyze a question in
a fraction of a second, which is critical for competing at
Jeopardy!.
We have evaluated our implementation in terms of

its performance on the LAT detection and Question
Classification tasks, as well as its impact on Watson’s
end-to-end question-answering accuracy. For the evaluation,
we proposed a baseline question analysis implementation
based on easily observable patterns from Jeopardy! questions
and have shown that our question analysis provides a
significant improvement in the question-answering accuracy
over this baseline.
In all, the Watson system with its full question analysis

capabilities correctly answers an additional 5.9% of questions
versus the system that includes baseline focus and LAT
detection and no QClass and QSection detection. On the
basis of our analysis of human Jeopardy! performance [10],
an accuracy reduction of this magnitude would substantially
degrade Watson’s chances to win a Jeopardy! game
against good human competition.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., or Trustees of Princeton University in the United
States, other countries, or both.

References
1. J. W. Murdock, J. Fan, A. Lally, H. Shima, and

B. K. Boguraev, BTextual evidence gathering and analysis,[
IBM J. Res. Develop., vol. 56, no. 3/4, Paper 8, pp. 8:1–8:14,
May/Jul. 2012.

2. J. W. Murdock, A. Kalyanpur, C. Welty, J. Fan, D. Ferrucci,
D. C. Gondek, L. Zhang, and H. Kanayama, BTyping candidate
answers using type coercion,[IBM J. Res. Develop., vol. 56,
no. 3/4, Paper 7, pp. 7:1–7:13, May/Jul. 2012.

3. J. M. Prager, E. W. Brown, and J. Chu-Carroll, BSpecial questions
and techniques,[IBM J. Res. Develop., vol. 56, no. 3/4, Paper 11,
pp. 11:1–11:13, May/Jul. 2012.

4. D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock, P. Duboue,
L. Zhang, Y. Pan, Z. M. Qiu, and C. Welty, BA framework
for merging and ranking of answers in DeepQA,[IBM J. Res.
Develop., vol. 56, no. 3/4, Paper 14, pp. 14:1–14:12,
May/Jul. 2012.

5. A. Kalyanpur, S. Patwardhan, B. K. Boguraev, A. Lally, and
J. Chu-Carroll, BFact-based question decomposition in
DeepQA,[IBM J. Res. Develop., vol. 56, no. 3/4, Paper 13,
pp. 13:1–13:11, May/Jul. 2012.

6. L. Sterling and E. Shapiro, The Art of PrologVAdvanced
Programming Techniques, 2nd ed. Cambridge, MA: MIT Press,
1994.

7. M. Covington, Natural Language Processing for Prolog
Programmers. Englewood Cliffs, NJ: Prentice-Hall, 1994.

8. E. Voorhees, BOverview of the TREC 2002 question answering
track,[in Proc. 11th Text REtrieval Conf., 2002, pp. 115–123.

9. D. Giampiccolo, P. Froner, A. Peñas, C. Ayache, D. Cristea,
V. Jijkoun, P. Osenova, P. Rocha, B. Sacaleanu, and R. Suteliffe,
BOverview of the CLEF 2007 multilingual question answering
track,[in Proc. Cross Language Eval. ForumVAdvances in
Multilingual and Multimodal Information Retrieval, vol. 5152,
Lecture Notes In Computer Science, C. Peters, V. Jijkoun,
T. Mandl, M. Henning, D. W. Oard, P. Anselmo, V. Petras, and
D. Santos, Eds. Berlin, Germany: Sringer-Verlag, 2007,
pp. 200–236.

10. D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek,
A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager,
N. Schlaefer, and C. Welty, BBuilding Watson: An overview
of the DeepQA project,[AI Mag., vol. 31, no. 3, pp. 59–79,
2010.

11. M. C. McCord, J. W. Murdock, and B. K. Boguraev, BDeep
parsing in Watson,[IBM J. Res. Develop., vol. 56, no. 3/4,
Paper 3, pp. 3:1–3:15, May/Jul. 2012.

12. C. Wang, A. Kalyanpur, J. Fan, B. K. Boguraev, and D. C. Gondek,
BRelation extraction and scoring in DeepQA,[IBM J. Res. Develop.,
vol. 56, no. 3/4, Paper 9, pp. 9:1–9:12, May/Jul. 2012.

13. L. Vita, A. Ittycheriah, S. Roukos, and N. Kambhatla,
BtRuEcasing,[in Proc. ACL, Sapporo, Japan, 2003, pp. 152–159.

14. A. Kalyanpur, B. K. Boguraev, S. Patwardhan, J. W. Murdock,
A. Lally, C. Welty, J. M. Prager, B. Coppola,
A. Fokoue-Nkoutche, L. Zhang, Y. Pan, and Z. M. Qiu,
BStructured data and inference in DeepQA,[IBM J. Res.
Develop., vol. 56, no. 3/4, Paper 10, pp. 10:1–10:14,
May/Jul. 2012.

15. D. Ferrucci and A. Lally, BBuilding an example application
with the unstructured information management architecture,[
IBM Syst. J., vol. 43, no. 3, pp. 455–475, 2004.

16. C. Fellbaum, WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press, 1998.

17. Q. McNemar, BNote on the sampling error of the difference
between correlated proportions or percentages,[Psychometrika,
vol. 12, no. 2, pp. 153–157, Jun. 1947.

18. U. Hermjakob, E. H. Hovy, and C. Lin, BKnowledge-based
question answering,[in Proc. 6th World Multiconf. Syst.,
Cybern. Inform., 2002. [Online]. Available: http://
research.microsoft.com/en-us/people/cyl/sci2002.pdf.

19. J. Chu-Carroll, J. Prager, C. Welty, K. Czuba, and D. Ferrucci,
BA multi-strategy and multi-source approach to question
answering,[in Proc. Text REtreival Conf., 2003. [Online].
Available: http://trec.nist.gov/pubs/trec11/papers/ibm.prager.pdf.

20. D. Moldovan, C. Clark, S. Harabagiu, and S. Maioran,
BCOGEX: A logic prover for question answering,[in Proc.
HLT-NAACL, 2003, pp. 87–93.

21. W. Lehnert, BHuman and computational question answering,[
Cognit. Sci., vol. 1, no. 1, pp. 47–73, Jan. 1977.

22. D. B. Lenat, BCyC: A large-scale investment in knowledge
infrastructure,[Commun. ACM, vol. 38, no. 11, pp. 33–38,
Nov. 1995.

23. K. Forbus and P. Paritosh, BAnalysis of strategic knowledge
in back of the envelope reasoning,[in Proc. 20th Nat. Conf.
AAAI, vol. 2, A. Cohn, Ed., 2005, vol. 2, pp. 651–656.

24. J. M. Prager, BOpen-domain question answering,[Found.
Trends Inform. Retrieval, vol. 1, no. 2, pp. 91–231,
2006.

25. R. Bunescu and Y. Huang, BTowards a general model of
answer typing: Question focus identification,[in Proc. 11th
Int. Conf. Intell. Text Process. Comput. Linguist., Iasi, Romania,
2010. [Online]. Available: http://ace.cs.ohiou.edu/~razvan/papers/
cicling10.pdf.

26. X. Li and D. Roth, BLearning question classifiers,[in Proc.
19th Int. Conf. Comput. Linguist., 2002, vol. 1, pp. 1–7.

27. D. Zhang and W. S. Lee, BQuestion classification using support
vector machines,[in Proc. 26th Annu. Int. ACM SIGIR Conf.
Res. Dev. Inform. Retrieval, 2003, pp. 26–32.

2 : 12 A. LALLY ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

28. N. Schlaefer, J. Ko, J. Betteridge, G. Sautter, M. Pathak, and
E. Nyberg, BSemantic extensions of the Ephyra QA system
for TREC,[in Proc. TREC, 2007. [Online]. Available:
http://www.cs.cmu.edu/~nico/pubs/trec2007_schlaefer.pdf.

29. A. Mikhailian, T. Dalmas, and R. Pinchuk, BLearning foci for
question answering over topic maps,[in Proc. ACL-IJCNLP
Conf., Suntec, Singapore, 2008, pp. 325–328.

30. C. Pinchak and D. Lin, BA probabilistic answer type model,[in
Proc. 11th Conf. Eur. Chapter Assoc. Comput. Linguist., Trento,
Italy, 2006, pp. 393–400.

Received August 2, 2011; accepted for publication
January 10, 2012

Adam Lally IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (alally@us.ibm.com).
Mr. Lally is a Senior Technical Staff Member at the IBM T. J. Watson
Research Center. He received the B.S. degree in computer science
from Rensselaer Polytechnic Institute, Troy, NY, in 1998 and
the M.S. degree in computer science from Columbia University,
New York, NY, in 2006. As a member of the IBM DeepQA Algorithms
Team, he helped develop the Watson system architecture that gave
the machine its speed. He also worked on the natural-language
processing algorithms that enable Watson to understand questions
and categories and gather and assess evidence in natural language.
Before working on Watson, he was the lead software engineer
for the Unstructured Information Management Architecture project,
an open-source platform for creating, integrating, and deploying
unstructured information management solutions.

John M. Prager IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (jprager@us.ibm.
com). Dr. Prager has been working in technical fields related directly or
indirectly to question answering for most of his professional career.
Most recently, while at the T. J. Watson Research Center, he has been
part of the Watson project, building a system that plays the Jeopardy!
quiz-show game. He has been involved in both the algorithms area,
in particular working on puns and other wordplay, and the strategy
area. Previously, he led IBM’s successful entries in Text REtrieval
Conference Question-Answering (TREC-QA) tasks, an annual
evaluation at the National Institute of Standards and Technology
(NIST). Prior to that, he worked in various areas of search, including
language identification, web search, and categorization. He has
contributed components to the IBM Intelligent Miner for Text product.
For a while in the early 1990s, he ran the search service on www.ibm.
com. While at the IBM Cambridge Scientific Center, Cambridge,
MA, he was the Project Leader of the Real-time Explanation and
Suggestion project, which would provide users with help by taking
natural-language questions and processing them with an inference
engine tied to a large repository of facts and rules about network-wide
resources. He has degrees in mathematics and computer science
from the University of Cambridge, Cambridge, U.K. and in artificial
intelligence from the University of Massachusetts, Lowell; his
publications include conference and journal papers, nine patents, and
a book on Alan Turing.

Michael C. McCord IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY 10598 USA (mcmccord@us.
ibm.com). Dr. McCord is a Research Staff Member in the Semantic
Analysis and Integration Department at the T. J. Watson Research
Center. He received the Ph.D. degree in mathematics from Yale
University, New Haven, CT, and spent a year at the Institute for
Advanced Study. His initial research was in mathematics (topology
and foundations), and he then moved into computer science and
natural-language processing, with emphasis on syntax and semantics.
He has been at IBM Research since 1983. He originated the Slot
Grammar parsing system, which has been applied to machine
translation and grammar checking, and which is used in the Watson
question-answering system. He is author or coauthor of 47 refereed
articles and one book.

Branimir K. Boguraev IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA (bran@us.
ibm.com). Dr. Boguraev is a Research Staff Member in the Semantic
Analysis and Integration Department at the Thomas J. Watson Research
Center. He received the Engineering degree in electronics from the
Higher Institute for Mechanical and Electrical Engineering, Sofia,
Bulgaria, in 1974, and the diploma and Ph.D. degrees in computer
science (1976) and computational linguistics (1980), respectively,
from the University of Cambridge, Cambridge, U.K. He worked on a
number of U.K./E.U. research projects on infrastructural support for
natural-language processing applications, before joining IBM Research
in 1988 to work on resource-rich text analysis. From 1993 to 1997,
he managed the natural-language program at Apple’s Advanced
Technologies Group, returning to IBM in 1998 to work on language
engineering for large-scale, business content analysis. Most recently,
he has worked, together with the Jeopardy! Challenge Algorithms
Team, on developing technologies for advanced question answering.
He is author or coauthor of more than 120 technical papers and
15 patents. Until recently, he was the Executive Editor of the
Cambridge University Press book series Studies in Natural Language
Processing. He has also been a member of the editorial boards of
Computational Linguistics and the Journal of Semantics, and he
continues to serve as one of the founding editors of Journal of Natural
Language Engineering. He is a member of the Association for
Computational Linguistics.

Siddharth Patwardhan IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(siddharth@us.ibm.com). Dr. Patwardhan is a Post-Doctoral Researcher
in the Knowledge Structures Group at the T. J. Watson Research
Center. He received the B.E. degree in computer engineering from
the University of Pune, Pune, India, in 2001, the M.S. degree in
computer science from the University of Minnesota, Duluth, in 2003,
and the Ph.D. degree in computer science from the University
of Utah, Salt Lake City, in 2010. He has been working at the IBM
T. J. Watson Research Center since 2009, exploring research projects
in natural-language processing and artificial intelligence. He is
a member of the Algorithms Team working on the IBM Jeopardy!
challenge and is an author or coauthor of more than 25 technical
publications covering his work on information extraction, opinion/
sentiment analysis, computational lexical semantics, and question
answering. Dr. Patwardhan is a member of the Association for
Computational Linguistics and a member of the Association for
the Advancement of Artificial Intelligence.

James Fan IBM Research Division, Thomas J. Watson Research
Center, Yorktown Heights, NY 10598 USA (fanj@us.ibm.com).
Dr. Fan is a Research Staff Member in the Semantic Analysis and
Integration Department at the T. J. Watson Research Center, Yorktown
Heights, NY. He joined IBM after receiving the Ph.D. degree at the
University of Texas at Austin, Austin, in 2006. He is a member of
the DeepQA Team that developed the Watson question-answering
system, which defeated the two best human players on the quiz show
Jeopardy!. He is author or coauthor of dozens of technical papers on
subjects of knowledge representation, reasoning, natural-language
processing, and machine learning. He is a member of Association
for Computational Linguistics.

Paul Fodor Computer Science Department, Stony Brook
University, Stony Brook, NY 11794 USA (pfodor@cs.stonybrook.edu).
Dr. Fodor is a Research Assistant Professor in the Computer Science
Department at Stony Brook University (SUNY of New York),
Stony Brook. He received the B.S. degree in computer science from
the Technical University of Cluj-Napoca, Cluj-Napoca, Romania,
in 2002, and the M.S. and Ph.D. degrees in computer Science from
the Stony Brook University, in 2006 and 2011, respectively. His work
on declarative rule languages and logic used as a specification language
and implementation framework for knowledge bases was applied
in areas ranging from natural language processing to complex event
processing and the Semantic Web. Through his research, he has

A. LALLY ET AL. 2 : 13IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

contributed to several large software projects: IBM Watson,
OpenRuleBench suite of benchmarks for analyzing the performance
and scalability of rule systems for the Semantic Web, ETALIS
declarative complex event processing, and SILK Semantic Inferencing
on Large Knowledge. He is an author or coauthor of 12 technical
papers.

Jennifer Chu-Carroll IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, NY 10598 USA
(jencc@us.ibm.com). Dr. Chu-Carroll is a Research Staff Member in
the Semantic Analysis and Integration Department at the T. J. Watson
Research Center. She received the Ph.D. degree in computer science
from the University of Delaware in 1996. Prior to joining IBM in
2001, she spent 5 years as a Member of Technical Staff at Lucent
Technologies Bell Laboratories. Her research interests are in the area of
natural-language processing, more specifically in question-answering
and dialogue systems. Dr. Chu-Carroll serves on numerous technical
committees, including as program committee co-chair of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL HLT) 2006 and as general
chair of NAACL HLT 2012.

2 : 14 A. LALLY ET AL. IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 2 MAY/JULY 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

