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B. K. BoguraevOne useful source of evidence for evaluating a candidate answer

to a question is a passage that contains the candidate answer and
is relevant to the question. In the DeepQA pipeline, we retrieve
passages using a novel technique that we call Supporting Evidence
Retrieval, in which we perform separate search queries for each
candidate answer, in parallel, and include the candidate answer as
part of the query. We then score these passages using an assortment
of algorithms that use different aspects and relationships of the
terms in the question and passage. We provide evidence that our
mechanisms for obtaining and scoring passages have a substantial
impact on the ability of our question-answering system to answer
questions and judge the confidence of the answers.

Introduction
After analyzing a question [1] and generating a set of
candidate answers [2], the DeepQA pipeline employs an
extensible set of evidence-scoring components to quantify
evidence relating to each of the candidate hypotheses. In this
paper, we focus on a specific subset of those components:
passage-scoring components. Passage-scoring components
use text passages that contain a candidate answer and try
to relate those passages back to the question text. The
passages are retrieved using a novel technique that we call
Supporting Evidence Retrieval (SER), which inserts the
candidate answer back into the original question to form a
proposition; it then uses the DeepQA search techniques [2] to
find passages most closely related to that proposition. Each
passage-scoring component provides separate scores for
each candidate answer in each passage found for it. These
scores (along with scores from other evidence-scoring
components) are weighed and combined using a statistical
model during answer merging and ranking [3]. This way,
DeepQA computes the likelihood of each hypothesis being
correct.
We present the following four passage-scoring algorithms.

• Passage Term MatchVThis assigns a score by
matching question terms to passage terms, regardless
of grammatical relationship or word order.

• Skip-BigramVThis assigns a score by matching pairs of
terms that are connected or nearly connected (connected

skipping one other node) in the structure of the question
to corresponding pairs of terms in the passage.

• Textual AlignmentVThis assigns a score by comparing
the words and word order of the passage to those
of the question with the focus replaced by the candidate
answer.

• Logical Form Answer Candidate Scorer (LFACS)VThis
assigns a score on the basis of how well the structure
of the question matches with that of the passage, aligning
the focus to the candidate answer.

These algorithms are applied to passages obtained from
both primary search [2] and SER. Applying a variety of
scoring algorithms to a variety of passages for each
answer provides a powerful combination of capabilities
for identifying correct answers.
The remainder of this paper begins with our research

hypotheses. It then describes the precursors to the
passage-scoring algorithms: the SER mechanism that obtains
passages and the graph encoding of the content in the
questions and the retrieved passages. Next, we describe
the four passage-scoring algorithms listed above. Finally,
we provide evaluation results, discuss related work, and draw
conclusions.

Hypotheses
We evaluated the following two hypotheses.

Hypothesis 1VAnalyzing passages using a variety of
strategies, at different depths of analysis, is significantly
more effective than a single scoring strategy. Specifically,
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we employ the following four techniques described in
the introduction of this paper and in more detail below:
Passage Term Match, Skip-Bigram, Textual Alignment,
and Logical Form. We show that this combination
provides an effective set of answer-scoring
mechanisms.

Hypothesis 2VSER improves the effectiveness of passage
scoring by providing more passages for each answer than
are found in primary search alone.

Answer-scoring techniques fail when the initial passage
retrieval does not return passages that are amendable for
the scoring techniques. By performing additional searches
that include the candidate answer in the query, SER finds
more passages that express in different ways the key
relationship between the candidate answer and the question,
even if those passages are not very good matches for
some of the other question terms. Some of these passages
may be phrased in a way that is more appropriate for the
answer-scoring techniques. Furthermore, this takes advantage
of the redundancy in a large corpus since we are likely to
find more high-scoring passages for the correct answer
than for an incorrect answer.

Supporting Evidence Retrieval
Our implementation of SER is very similar to the Indri
passage-retrieval algorithm used for finding and generating
candidates [2]. This algorithm builds a search query using
terms from the question; it does not require any of the terms
and gives more credit to passages that match more of them.
SER augments this algorithm by adding in the candidate
answer string as a required term. We use the custom
passage-ranking algorithm described in [2]. The 20 highest
ranked passages obtained from SER are sent to the scoring
algorithms.
For example, consider the following Jeopardy!**

question:

BIn 1840 this German romantic married Clara Wieck,
an outstanding pianist and a composer, too.[

The DeepQA passage-retrieval query [2] returns a few
passages containing the correct answer, BRobert Schumann[,
causing it to be considered as a candidate answer. None
of those passages is highly scored by our answer scorers.
Here is one of those passages:

BClara Wieck Schumann: a German musician, one of
the leading pianists of the Romantic era, as well as a
composer, and wife of composer Robert Schumann.[

In order to find a good match between this passage and
the question, our passage scorers would need to know that
Bwife of[ (with BClara Wieck Schumann[ coreferential

with Bwife[) matches Bmarried[. This can be accomplished
through semantic relation detection, but we do not have
coverage for every semantic relation that Jeopardy! questions
ask about.
SER forms a query that includes the required phrase

BRobert Schumann[ along with other (optional) terms
from the question, such as B1840[, BGerman[, Bromantic[,
Bpianist[, BClara Wieck[, and Bcomposer[. This query
returns many more passages, such as

BAlthough Robert Schumann made some Fsymphonic
attempts_ in the autumn of 1840, soon after he married
his beloved Clara Wieck, he did not compose the
symphony until early 1841.[

This passage does not contain many of the original
query terms such as BGerman[, Bromantic[, or Bpianist",
and so was highly ranked only after we included
BRobert Schumann[ in the query. Since it uses the verb
Bmarried[ with subject BRobert Schumann[ (after applying
some anaphora resolution) and object BClara Wieck[,
it can be scored well by Logical Form using syntactic
relations alone (see below for more details).

Syntactic–semantic graphs
Two of the passage scorers (Skip-Bigram and LFACS) are
designed to use structural characteristics of questions and
passages and, therefore, operate on syntactic–semantic
graphs. In these graphs, the nodes are terms in the clue
(e.g., a word or a proper name), and the edges encode
syntactic and/or semantic relations among those terms.
Such graphs are hybrid, in which they combine the depth
and power of deep semantic relationship detection with
the breadth and generality of syntactic analysis.
The syntactic portions of the graph are derived from a

predicate-argument structure (PAS) abstracted from an
English Slot Grammar (ESG) parse [4]. The semantic
portions of the graph are derived by semantic relation
detectors [5]. Both the question and the passage text
are mapped to their graph representation using the
same mapping procedure. Some of the DeepQA relation
patterns were specifically motivated by challenges in
passage scoring; those are described in more
detail below.

Matching with syntactic–semantic graphs
The most common source of failure in passage scoring
is differences in the way things are expressed in text and
the way they are expressed in passages. For example,
consider the following question and passage:

BWho authored FThe Good Earth_?[

BPearl Buck, author of FThe Good Earth_[
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The question would have a syntactic graph derived
directly from the subject and object arguments to its
main verb, with edges such as (author-subj-who) and
(author-obj-The Good Earth). We use the notation
Bðhtermi-hedge-labeli-htermiÞ[ to indicate the labeled
edge of the graph connecting two text terms; thus,
(author-subj-who) represents the subj relation between
the two nodes underlying BWho authored[. None of these
edges is a good match for any of the edges in a purely
syntactic graph of the passage (which has no verb and,
thus, no subject or object for that verb).

One way to address this challenge is to abstract, from
the syntax, a more semantically rich graph; this can
allow a question to match a wider variety of semantically
equivalent passages. For example, we could encode the
question as a single-edged graph, i.e., (who-authorOf-The
Good Earth), appealing to a semantic relation in a fixed
ontology, i.e., authorOf. The passage BPearl Buck, author
of FThe Good Earth_[ could also be encoded as (Pearl
Buck-authorOf-The Good Earth). Such abstraction would
license aligning the two subgraphs that now have an
identical edge.
As described in later sections, Skip-Bigram and LFACS

both benefit from aligned edges in the structure of the
question and passage. LFACS is particularly dependent
on edges such as this because it requires that edge labels
match and does not skip over nodes. When semantic
relationships such as authorOf are detected, Skip-Bigram
and LFACS can use those edges. When they are not,
these scorers must rely on syntactic edges. The hybrid
nature of syntactic–semantic supports both matching
regimes.
Relation detectors can find multiple useful relations

in a single question. Consider aligning the following
question–passage pair:

BAmbrose Bierce penned this sardonic reference work
in 1906.[

BOne of Ambrose Bierce’s most famous works is his
much-quoted book, The Devil’s Dictionary.[

Question analysis detects a relation that can be rendered
as a subgraph (Ambrose Bierce-authorOf-work:focus);
passage analysis detects two relations, namely,
(Ambrose Bierce-authorOf-book) and a (The Devil’s
Dictionary-instanceOf-book). Chaining these two
subgraphs across the shared (book) node gives LFACS
and Skip-Bigram enough information to successfully align
the unbound (focus) variable, Bthis . . . work[, in the
authorOf relation on the question side with BThe Devil’s
Dictionary[ in the passage, thus acquiring supporting
evidence for this candidate answer.

Semantic relations for matching
We detect two different classes of semantic relations.
Deep semantic relations connect strongly typed ontological
entities, via ontological relationships (e.g., those between
persons and works of art, exemplified by authorOf).
The motivation for, nature, and choice of deep semantic
relations used in DeepQA are discussed in [5]. Shallow
semantic relations detect alternative syntactic contexts
expressing the same (even if unnamed) semantic relationship
between two or more entities. Such shallow relations can
be also used for passage alignment. Our motivation for
developing them comes from the fact that a semantic
relationship between entities may be expressed,
systematically, in a variety of surface forms, some of
which are predictable as a transformation over a (local)
syntactic tree.
Consider, for example, noun–noun modification. While

compound nouns present the notoriously difficult problem
of interpreting the semantic relation implicit in the
compounding, a syntactic transform via a linking
prepositional phrase is usually meaning preserving: Bthis
Wyoming senator[ will match Ba senator from Wyoming[.
We detect, for both forms, the same relation, i.e.,
(senator-relatedTo-Wyoming); note that although no deep
semantic label is assigned, subgraph matching in LFACS
will be triggered via the identically labeled edges. Thus,
shallow semantic analysis abstracts away the syntactic
differences between the noun compounding and
noun–prepositional phrase postmodification. A similar
kind of analysis underscores the equivalence of Bfive of
the senators[ and Bfive senators[, BMonroe’s presidency[
and Bthe Monroe presidency[, and others.
Other examples of shallow semantic relations include

appositive constructions, lexical coreference, lexical typing,
geopolitical characterization, and temporal stamping. In
general, shallow semantic relations, by capturing alternate
variants of common expressions, encode intuitions that
other work refers to as natural-language axioms (see [6];
we extend this work, at least in coverage).
The shallow semantics inventory (derived from an

intensive data analysis) thus systematically encodes
numerous patterns to detect alternative surface formulations
of relations such as relatedTo, instanceOf,
subtypeOf, sameAs, coIndex, tLink, and
gpAssociation, i.e., the last two referring to temporal
links (typically between a date and an event), and
geopolitical association expressions such as BAlaska’s
capital[ and Bthis Alaskan capital[. The LFACS component
is conditioned to match subgraphs anchored on such labels.
Shallow semantic analysis for structure matching also

incorporates the broad set of verb alternation patterns
(for English) [7]. These are, in effect, templates that identify
alternative syntactic realizations of a predicate-argument’s
cluster, without change in meaning. As such, they naturally
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fall within the range of structural transformations that can
benefit LFACS and Skip-Bigram.
As an example, consider the common case of the ergativity

paradigm, which allows for (surface) subject/object
interchangeability. In the following question–passage pair,
we would want Bmaterial[ on the question side to align
with Bcartilages[:

BThe meniscus disks in your knee are a type of this
material that may tear if you twist wrong[ to align
with Bcartilage[

B. . . it is common to tear one or more ligaments or
cartilages[

On the basis of syntax alone, alignment would fail as the two
terms are in different argument positions to the verb Btear[:
The question focus (Bmaterial[) is a subject, whereas the
passage has the answer (Bcartilage[) as object to Btear[.
Shallow semantic relations detect syntactic configurations
governed by alternations-licensing verbs and, for both
sides of the pattern template, postsemantic roles (in the
case above, e.g., agent and theme are relation labels
superimposed on the arguments of Btear[). Our analysis
exploits VerbNet [8], augmented with local additions to its
verb paradigm classes.

Passage Term Match
Passage Term Match provides a measure of how often a
candidate answer appears in the same passages as the
question terms. It is useful for two reasons. First, passages
that support the answer to a question may do so in a way that
uses the same words but in a radically different order and
with a dramatically different syntactic structure. Second,
passages that do not specifically answer the question but just
reflect some co-occurrence may be still correlated with the
answer being correct. For example, a passage that states
that Robert Schumann and Clara Wieck traveled together
does not prove, imply, or even strongly suggest that the
two were married, but statistically having more passages
that include the two of them is correlated with them being
married. Thus, such a passage should be viewed as providing
some evidence in support of Robert Schumann having
married Clara Wieck. The core weakness of Passage Term
Match is that it can be too aggressive, assigning too much
credit to candidate answers that are closely related to the
content of the clue but are not actually correct; the
components described in later sections address this weakness
in various ways and thus complement Passage Term Match.
The Passage Term Match scorer evaluates each passage

on the basis of which question terms it contains. Question
terms t1 . . . tn are extracted from the question. A question
term may be a single token, a multiword term taken from
a lexicon of common terms, or a proper name. Then, for

each passage, a score pi is computed as the sum of inverse
document frequency (idf) values of matching terms,
normalized by the sum of idf values of all terms in the
question. That is,

pi ¼
Pn

j¼1 wijPn
k¼1 idf ðtkÞ

;

where wij is defined as idf ðtjÞ if passage i contains term tj
and 0 if otherwise. idf ðtÞ is the idf defined as

idf ðtÞ ¼ log
N

cðtÞ þ 1
;

where cðtÞ is the number of documents that contain token t
and N is the total number of documents in a large corpus.
We used idf as weights for matches/mismatches instead
of uniform weights because not all tokens are equally
important. Matching a rarely used named entity is more
informing than matching a frequently used stop word.

Skip-Bigram
The Skip-Bigram scorer computes a score on the basis of
how many pairs of terms from a question and a passage
match, where terms are connected or nearly connected in a
structural graph. These graphs come from a combination
of parsing and semantic relation detection, as described in the
section on syntactic–semantic graphs above. The scorer
attempts to match Skip-Bigrams, which are pairs of terms
that are linked directly in the graphs or indirectly through
only one intermediate node.
Like Passage Term Match, the Skip-Bigram scorer is

largely a measure of co-occurrence; it determines the extent
to which the answer appears in passages with words from
the clue. However, Skip-Bigram specifically focuses
on whether those words are close to each other in the
syntactic–semantic graph. For example, given a question
such as BWho invented the motor driven phonograph?,[
Skip-Bigram will give credit to passages that discuss Bmotor
driven phonograph,[ Bphonograph driven by a motor,[
Bmotor driving a phonograph,[ etc. Skip-Bigram will not
give credit for passages that mention motors, driving, and
phonographs in separate sentences or clauses and will thus
ignore some passages that Passage Term Match awards
a high score to. Those passages can provide some evidence
in support of answers, but it is generally weaker evidence
than the cases where the question terms are closely
interconnected. As a result, the DeepQA final ranking
algorithm is better off having both scores as distinct features
than it would be with only one or the other.
The Skip-Bigram algorithm was first introduced in [9]

as an automatic evaluation metric for machine translation,
in which system translations are compared with human
reference translations. Our algorithm is an extension of the
original algorithm; it is capable of extracting Skip-Bigrams
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from a graph rather than a surface text. We evaluate the
similarity between a passage and a question as a numeric
score between 0 and 1 as follows.
Let Psb and Qsb be a set of Skip-Bigrams extracted from

a passage and a question graph, respectively. We define
a Skip-Bigram to be a pair of terms that either are directly
connected in the graph or are both directly connected to
a single common (Bskipped[) node in the graph. First,
we compute two scores, i.e., the size of the common
Skip-Bigrams with length normalization

scoreP ¼
jPsb \ Qsbj
jPsbj

scoreQ ¼
jPsb \ Qsbj
jQsbj

:

For purposes of computing common Skip-Bigrams, the
scorer assumes that the focus of the question matches the
candidate answer; bigrams including the focus in the question
match bigrams including the candidate in the passage
if the other term of each bigram matches. We have run
experiments in which these scores were weighted by the
idf scores of the matching terms; however, this configuration
did not perform as well on our data.
The Skip-Bigram score is calculated by taking a harmonic

mean of the two scores

score ¼ 2 � scoreP � scoreQ
scoreP þ scoreQ

:

The harmonic mean function was chosen for this purpose
for roughly the same reason it is used to combine precision
and recall scores in information retrieval (IR) studies:
It provides a mechanism for integrating values that requires
both values to be high to get a high combined score. In
contrast, an arithmetic mean would allow a very short
question or passage to have a misleadingly high score.

Textual Alignment
The Textual Alignment Candidate Scorer (TACS) judges
a candidate on the basis of the surface similarity of a
candidate-bearing passage and a question. It is motivated
by the fact that sometimes one may find a passage that is
similar to the question. For example, consider the question
BWho is the president of France?[ and the passage
BNicolas Sarkozy is the president of France.[ The passage
is obviously strong justification for BNicolas Sarkozy[ as
the answer.
Compared with Passage Term Matching, TACS is stronger

when the word order is very important and informative.
For the previous question, Passage Term Match would be
misled by BPresident Clinton visited France,[ since it
contains the question keywords, whereas TACS will return
a much lower similarity score for these two statements
because it contains different words and orders the words

that are in common differently (e.g., BWho[ in the question
occurs before Bpresident[ in the question but BClinton[
appears after Bpresident[ in the passage; moreover, Bvisited[
in the passage does not match anything in the question
but falls between Bpresident[ and BFrance[). In contrast,
the passage BFrance’s president is Nicolas Sarkozy[ is better
handled by Passage Term Match than TACS because it
contains the right words and expresses the right content
but does not use the same (or even similar) word order.
Although one may find passages that are very similar to

the question, they are almost never identical. Consider the
following Jeopardy! question:

BIn 1698, this comet discoverer took a ship called
the Paramour Pink on the first purely scientific sea
voyage.[

One can find the following passage:

BEdmund Halley made probably the first primarily
scientific voyage to study the variation of the magnetic
compass.[

In this example, the passage adds words such as Bprobably[
and Bprimarily[ and lacks the words Bpurely[ and Bsea[
from the question. Because of these differences, the passage
does not completely and unambiguously answer this
question. However, it is close enough that a typical reader
would interpret the passage as partial evidence in support
of BEdmund Halley[ as the answer. For our system to
also interpret this passage in this way, we must use an
algorithm that can handle the mismatches and the matches
between the passage and the question. TACS handles this
well by being robust with respect to differences and
providing partial credit for incomplete alignment.
TACS also needs to be able to score partial matches.

The passage justifies only the part of the question about
Bfirst purely scientific sea voyage[ without any support for
Ba ship named Paramour Pink[. A global aligning algorithm,
such as edit distance, does not meet this challenge.
The input to the TACS is made of a question string, a

passage string, the focus of the question, and the candidate
being scored. The output is a similarity measure. To address
the challenges noted above, we adopted the Waterman–Smith
[10] algorithm that has been used for local DNA or amino
acid sequence matching. Before we apply the alignment
algorithm, the input question is transformed into a statement
with the focus tokens replaced by the stub BFOCUS[
and candidate tokens in the input passage replaced by the
stub BCANDIDATE[.
Then, the new question and passage are aligned according

to an algorithm with three steps. First, it creates and
initializes three arrays P, Q, and score. Single-dimension
arrays P and Q contain the tokens in the passage and

J. W. MURDOCK ET AL. 8 : 5IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 8 MAY/JULY 2012



question, respectively. The 2-D array score is used to store
the alignment score, and score½i�½j� ¼ 0 for all i and j.
Second, it computes the value of each cell score½i�½j�, where
i 9 0 and j 9 0, using the formula

max

score½i� 1�½j� 1� þ sim P½i�;Q½j�ð Þ;
score½i� 1�; ½j� þ sim P½i�; �ð Þ;
score½i�½j� 1� þ sim �;Q½j�ð Þ;

0

0
BB@

1
CCA:

Similarity function simðt1; t2Þ is defined as follows:

simðt1; t2Þ ¼

idf ðt1Þ; if t1 ¼ t2
�idf ðt1Þ; if t2 ¼ �
�idf ðt2Þ; if t1 ¼ �
�idf ðt1Þ; if otherwise,

8>><
>>:

simðFOCUS;CANDIDATEÞ ¼ logðNÞ:

where idf ðtÞ is as described in the BPassage Term Match[
section and N is the number of documents in the corpus
used to compute the idf statistics. By defining the similarity
of the focus to the candidate to be log of the size of the
corpus (i.e., the maximum possible idf score for any term),
we ensure that the algorithm provides the most credit
allowable for aligning the focus of the question to the
candidate answer. Finally, the scorer returns the maximum
value in score as the similarity score of the input question
and passage.
Unlike Levenshtein edit distance or Needleman–Wunsch

algorithm [11], Waterman–Smith algorithm finds local
alignments, i.e., optimum subsequences of the input that
align. The value of each cell score½i�½j�, where i 9 0 and
j 9 0, reflects the maximum similarity between P½1; . . . ; i�
and Q½1; . . . ; j�. It is a nonnegative value that is the maximum
value of three possible ways to align P½1; . . . ; i� and
Q½1; . . . ; j�: aligning P½1; . . . ; i� 1� with Q½1; . . . ; j� 1� then
replacing P½i� with Q½j�, or aligning P½1; . . . ; i� 1� with
Q½1; . . . ; j� then inserting P½i�, or aligning P½1; . . . ; i� with
Q½1; . . . ; j� 1� then inserting Q½j�. Function simðt1; t2Þ
represents the similarity/cost of replacing term t1 with t2.
If t1 is empty (i.e., �), then simðt1; t2Þ represents the
similarity/cost of inserting t2.

Logical Form scoring
The Logical Form Answer Candidate Scorer (LFACS)
attempts to align a syntactic–semantic graph of the content of
a question to a syntactic–semantic graph of the content of a
passage. LFACS attempts to match the question graph to
the passage graph, given the constraint that the node for the
focus of the question must correspond to the node for the
candidate answer in the passage. The degree of the match
constitutes the score that LFACS assigns to the candidate.
For example, for the question BWho wrote The Hobbit?[

our syntactic graph has three nodes (who, write, and
The Hobbit) and two labeled edges, which we present

here using node-edge-node notation: (write-subject-who)
and (write-object-The Hobbit). Our parser creates a similar
graph of a passage BTolkien wrote The Hobbit.[ The focus
of the question is Bwho[. If BTolkien[ is a candidate
answer to the question, LFACS can attempt to align the
two graphs, matching the who node in the question graph
to the Tolkien node in the passage graph. In this case,
the graphs perfectly align given that constraint; hence,
LFACS assigns a high score to the candidate BTolkien[.
In the example above, we might also have another

candidate BDan Brown[ with a supporting passage
BDan Brown wrote The Da Vinci Code.[ In this case,
the passage aligns less well. The subject edge
(write-subject-who) in the question perfectly aligns with
the subject edge (write-subject-Dan Brown) in the passage
because the focus, Bwho,[ aligns with the candidate,
BDan Brown.[ However, the object edge in the question
only matches the object edge in the passage very weakly
if at all; Bwrite[ in the question matches Bwrite[ in the
passage perfectly, but depending on the term-matching
strategy used, BThe Hobbit[ in the question may match
BThe Da Vinci Code[ in the passage very little (because
of a weak semantic relatedness) or not at all. Thus,
LFACS would give relatively little score to the candidate
BDan Brown[ based on this passage.
The examples above would also be addressed well by

Textual Alignment. However, there are cases where LFACS
is able to provide a value that Textual Alignment cannot
because the graphs encode a deeper analysis of the question
and the parse than mere co-occurrence or proximity.
Thus, they can provide power for discriminating between
false and true positives that are not available to answer
scorers that count the number of term matches or align
text based on word order. For example, a system might
encounter passages such as the following:

BDan Brown wrote several books and has read
The Hobbit.[

BTolkien, an English author born in the late nineteenth
century, wrote The Hobbit.[

From the perspective of simple text matching, the former
is at least as good a match as the latter for BWho wrote
The Hobbit?[ However, syntactically (and semantically),
the latter passage is a better match.
The additional discriminating power that LFACS provides

comes at the cost of substantial brittleness. Often, a passage
retrieved for some candidate answer has many of the
same words in roughly the same order as the question but
does not relate those words using the same grammatical
relationships. In some cases (as in the Dan Brown sentence in
the previous paragraph), the answer is wrong and the
passage should not be interpreted as supporting the answer;
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for those examples, LFACS is more effective than any of
the other scorers. However, in other cases, the answer is
correct and the passage should be taken as supporting the
answer. For example, consider the following:

BTolkien wrote several books and The Hobbit is
the one that is easiest to read.[

This example should be interpreted as supporting the answer,
but syntactically, it does not match the clue any better
than the Dan Brown example. In some cases, this
discrepancy can be addressed using semantic relation
detection, as described earlier. However, relation detectors
have limited coverage, and when they fail (as they do in
this example) and when the passages use different syntactic
structures than the clue, LFACS is less effective than the
other answer scorers.
Once LFACS has aligned as much of the question as

possible to the passage, it computes a score for each question
term as the product of the degree of match and the term
weight. The degree of match itself is a product of a term
match score and a structural match score. The term
match score indicates the degree to which that term in the
question matched the corresponding term in the passage,
e.g., BBob Dole[ matches BBob Dole[ perfectly but BDole[
imperfectly. The structural match score is the maximum
across all paths from the question term to the focus of the
product of all term match scores and edge match scores for
the terms and edges on that path. As with other passage
scorers, we have configured LFACS to use idf as the
term weight in IBM Watson*. The final score that LFACS
assigns to an answer in a single passage is the sum of
the scores it assigns to each term. The algorithm for aligning
graphs and computing scores in LFACS is described in
more detail in [12].
In our experiment on blind data (described in detail in the

BEvaluation[ section), 1.9% of all questions were correctly
answered in the full Watson configuration and were
incorrectly answered in the Watson configuration with
LFACS ablated. The net impact of LFACS (seen in that
experiment) was less than 1.9% because some questions are
correctly answered without LFACS but incorrectly with
LFACS. Some of the questions for which adding LFACS
resulted in a correct answer are the ones for which LFACS is
able to thoroughly align the clue to the passage, for example,

Question: BThe Mare Frigoris is the sea of this.[

Passage: BMare Frigoris (the Bsea of cold[) is a
lunar mare located just north of Mare Imbrium, and
stretches east to north of Mare Serenitatis.[

In this example, shallow semantic relation detection is able
to determine that the same relationship holds between

BMare Frigoris[ and Bsea[ in both sentences. The PAS then
connects Bsea[ to Bof[ and Bof[ to the focus and candidate
answer. As a result of this strong score from LFACS, DeepQA
answer ranking promotes the correct answer, Bcold[, over the
answer it preferred without LFACS, BMare Imbrium[.
In contrast, there are many other cases where LFACS

is able to elevate the correct answer into first place despite
only matching a fraction of the clue, for example,

Question: BSilver Springs in northern Florida is one of
the state’s largest water-filled one of these holes.[

Passage: BDevil’s Hole is a large water-filled sinkhole
close to the southeastern corner of Harrington Sound,
Bermuda.[

This passage does not strongly support this answer, in that
it says nothing about Silver Springs. However, it does
suggest that a sinkhole can be both large and water-filled.
In contrast, the answer that the Watson configuration with
no LFACS selected for this answer was BOcala[, a town
near Silver Springs that none of our passages describe
as Blarge[ or Bwater-filled.[ Thus, LFACS provides
inconclusive but still quite useful evidence.
In some cases, LFACS provides only weak inconclusive

evidence even when the passage does provide strong support,
for example,

Question: BIn FA Christmas Carol_, we learn
this man once apprenticed with the jolly merchant
Mr. Fezziwig.[

Passage: BThe character Fezziwig owned
the business where Scrooge was apprenticed in
FA Christmas Carol_.[

Here, LFACS correctly recognizes that the focus (Bman[)
and candidate (BScrooge[) are the objects of the verb
Bapprenticed[ in both sentences. However, it fails to further
connect these terms to important matching terms such as
BA Christmas Carol[ and BFezziwig[ because of differences
in the syntactic structure (e.g., the preposition Bin[ is
attached to Blearn[ in the question and Bapprenticed[ in
the passage) and a lack of semantic relations to compensate.
Thus, LFACS gets a fairly weak score for Scrooge, but
none at all for the answer that Watson without LFACS
prefers: Charles Dickens. If LFACS had made the other
connections, Watson would have even higher confidence
in the correct answer. However, the simple fact that
Scrooge is characterized as being apprenticed in some
passage was enough evidence to convince the DeepQA
answer-ranking component to promote BScrooge[ ahead of
BCharles Dickens[ (who has excellent scores from other
passage scorers, but 0 from LFACS for this question).
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In future work, we intend to pursue approaches that
combine some of the ability of LFACS to make subtle
distinctions that depend on deep semantic analysis with some
of the flexibility of our other passage-scoring components.
We intend to do so by more aggressively matching patterns
of structures that have equivalent or entailing content,
e.g., attempting to more aggressively connect to BA
Christmas Carol[ or BFezziwig[ in the example above.
This is a careful balancing act because drawing connections
too aggressively would cause LFACS to behave similarly
to Passage Term Match, which would make it redundant
and would eliminate its ability to introduce fine-grained
distinctions.

Merging across passages
The algorithms described in earlier sections each assigns
a distinct score for each passage that a candidate answer
appears in. During the final merging and ranking stage
of the DeepQA architecture [3], these scores for a given
candidate answer are merged so that each algorithm provides
a final score for each candidate answer; that merged score is
used as input to the statistical model that scores and ranks
candidate answers. We have the following three distinct
algorithms that we use to merge features across passages.

• MaximumVThe final score for the candidate answer
is the maximum score for that answer in any passages
found for that answer.

• SumVThe final score for the candidate answer is the
sum of the scores for that answer in each of the passages
found for that answer.

• Decaying sumVThe final score for the candidate answer
is computed to be

Pm
i¼0ðpi=2iÞ, where p0 . . . pm are the

scores of the passages that contain the answers, sorted in
descending order.

The maximum merging strategy is best suited for scorers
for which having a very high score from one passage is
much more informative than having many weaker passages.
In contrast, the sum merging strategy is best for scorers
for which accumulating large quantities of results across
many different passages is more important that finding any
single passage that matches very well. The decaying sum
strategy provides a compromise between these two extremes;
a few strong passages will consistently outscore many
mediocre ones (as with maximum), but many strong passages
still outscore a few strong passages (as with sum). We
have found maximum to be most effective for LFACS, which
is consistent with the intuition that, if LFACS finds one
passage that unambiguously answers the question, that
passage should count more than any number of passages
that only address part of what the question is asking for.
In contrast, no single passage can provide enough evidence
that Passage Term Match should be strongly convinced

that the answer is right (since co-occurring with all of the
question terms in one passage is still not particularly solid
evidence of correctness). Instead, the value of Passage Term
Match lies in accumulating results across passages; right
answers tend to frequently co-occur with the question terms
across many passages. Thus, a merging strategy such as
sum or decaying sum is a better fit for Passage Term Match.
Textual alignment and Skip-Bigram lie between these two
extremes but also appear to benefit from accumulating results
across passages. Specifically, we have found that merging
by sum is most effective for Skip-Bigram and merging
by decaying sum is most effective for Textual Alignment
and Passage Term Match.
One limitation of all three of these merging strategies is

that they fail to distinguish between multiple passages that
all address the same parts of some question versus multiple
passages that address different parts of some question. For
example, if we have a question that asks for an actor who
appeared in Stigmata and The Usual Suspects, we would
want to give a good score to a candidate that had three
passages saying he appeared in Stigmata and two saying
that he appeared in The Usual Suspects, but a much lower
score to a candidate that had ten passages saying that he
appeared in one of these movies but none for the other
movie. We intend to address this limitation in future work
and to explore other ways of combining feature values
across passages.

Evaluation
We test our hypotheses in the context of two different
DeepQA configurations. The full configuration includes
all of the components of the complete Watson system
configured for Jeopardy! question answering [13].
The Watson answer-scoring baseline configuration includes
all of the standard question analysis, search, and candidate
generation, but only one answer scorer (which checks
answer types using a named entity detector [14]) and a
simplified configuration for merging and ranking answers.
All experiments were conducted on a previously unseen
set of 3,508 questions.
Table 1 shows the overall impact of all of the passage

scoring in the full and baseline configurations. The second
column of the table shows the performance with all four
of the passage-scoring algorithms described above, but no
SER. In this condition, the only passages that were available
for passage scoring were the ones that came directly from
primary passage search, which uses only keywords in the
original questions [2]. In contrast, the third column also
includes SER providing additional passages for each
candidate. Having more passages for each candidate makes
the passage-scoring algorithms more effective. Note that
the Bno passage scoring[ configuration in the full system
(here and below) omits only the four passage-scoring
components described in this paper. Some other components
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do still make limited use of the supporting passages, e.g., for
determining whether the answer has the desired type [14].
The four scoring components described in this paper
are the only components that attempt to match the entire
question to the entire passage and, thus, are the only
components that we classify as passage-scoring components.
The baseline and the full systems are both more effective

at correctly answering questions with SER and all four
passage-scoring algorithms. As noted earlier, results from
the passage-scoring algorithms are statistically combined
with results from other components (search and other
answer-scoring components) in the DeepQA Final Merging
and Ranking component [3]. The impact of SER and passage
scoring is much larger in the baseline configuration than
in the full configuration; they have more room to contribute
in those cases. In both the baseline and full configurations,
passage scoring with SER provides higher accuracy than
passage scoring without SER, and passage scoring (even
without SER) provides better accuracy than no passage
scoring. All of these differences are statistically significant
(here and below, significance is assessed for p G :05 using
McNemar’s test with Yates’ correction for continuity).
SER is used in all of the experiments described in the
remaining tables.

Table 2 shows the results of adding each scorer, alone,
to the system with none of these four passage-scoring
components. This table shows that each of the passage
scorers is, by itself, more effective than no passage scoring.
The difference versus no passage scoring is significant in
all cases except for LFACS in the full configuration.
Table 3 shows the results of ablating each passage scorer,

one at a time, from a system that has all four scorers. In
the baseline configuration, ablating any one of the four
scorers had a negative impact of 1% or more on accuracy,
and these differences were all statistically significant;
ablating all four has an impact of nearly 7% on the baseline
system (also significant). In the full system, the impact of
ablating a single answer scorer is much more muted of
course; Skip-Bigram and LFACS had the largest impact,
and those differences (versus all passage scoring) were
significant; ablating Passage Term Match or Textual
Alignment from the system does not show a significant
impact on this test set. Ablating all four has an impact of
more than 3% on the full system.
One key observation across Tables 2 and 3 is that LFACS

has the least impact for both configurations in Table 2 but
the greatest impact in Table 3 for the baseline configuration
and one of the greatest impacts (along with Skip-Bigram)

Table 2 Accuracy (with SER) with no passage scoring versus each passage scorer separately.

Table 1 Accuracy with and without SER and passage scoring.
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for the full configuration. The differences between LFACS
and other scorers in Table 2 were all significant except
for the difference with Skip-Bigram in the baseline
configuration. The differences between LFACS and other
scorers in Table 3 were all significant in the baseline
configuration, but not in the full configuration. The key
distinction here is that if you are only employing one
passage-scoring strategy, LFACS is not a particularly
strong one, but if you already have several passage-scoring
strategies, LFACS is a particularly strong addition. This
reflects the additional depth and subtlety of the distinctions
that LFACS can make; with a set of scorers in place
that extracts much of the available signal to be had from
co-occurrence and proximity, there is substantial demand
for additional scorers to employ a deeper analysis.
We have also employed a wide variety of component-level

metrics to determine how effective each of the different
scorers is in isolation. There are a wide variety of established
IR metrics for measuring passage-ranking algorithms, but
they fail to directly measure the effectiveness of a score
at making individual judgments of answer correctness in
isolation. Doing so is difficult because each component gives
a numerical score rather than a simple binary judgment
of correctness; hence, there is not a direct obvious way to
compute how often each scorer is Bright[ on a per-answer

basis. One way to artificially approximate such a behavior
is to compute a mean score for each feature across all
answers to all questions and to treat each score as a judgment
of correctness if and only if that score is greater than the
mean. One can then measure precision as the percentage
of all answers judged correct that are correct and the recall
as the percentage of all answers that are correct that are
also judged correct. This approach produces misleadingly
low precision scores because there is a severe class
imbalance (far more wrong candidate answers than right
candidate answers). To correct for this, we discount
the number of answers judged incorrect for computing the
precision by the ratio of right answers to wrong answers
(to approximate the behavior, we would see if we tested
on the same number of right and wrong answers). We refer
to these metrics as Brelative precision[ and Brelative recall.[
We define Brelative F measure[ to be the harmonic mean
of these metrics.
Table 4 shows these results for the four passage-scoring

components. Not surprisingly, Passage Term Match has
the highest recall and lowest precision, whereas LFACS has
the lowest recall and highest precision. Textual Alignment
and Skip-Bigram both lie between these two extremes, with
Skip-Bigram having the highest F measure, as it provides
nearly as much recall as Passage Term Match while showing

Table 3 Accuracy (with SER) with all four passage scoring versus all except each passage scorer.

Table 4 Precision and recall of the components relative to the global mean score from each component, with a
correcting factor for class imbalance.
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substantially higher precision. Passage Term Match, Textual
Alignment, and Skip-Bigram all show very high recall,
reflecting their ability to provide meaningful scores even
when there are no very strong passages. In contrast, the
added precision of LFACS comes with much lower recall
because there are many questions for which LFACS is not
able to align any part of the question to any passage
containing the correct answer.

Related work
SER is similar to existing work that takes the candidate
answers produced by a traditional question-answering system
and exploits the redundancy of information in a large corpus
(typically the web) to distinguish correct from incorrect
answers [15–18]. However, most of that work is statistical,
concerned only with the number of documents retrieved
by a query, rather than a deep natural-language processing
analysis of the returned content. In [16], a content-based
approach was tried, but the analysis was limited to the token
distance between the answer and question terms. Another
difference from much of the prior work is the fact that
our implementation of SER does not access the Internet
at run time and instead uses local corpora (including
Wikipedia** and many other sources) for retrieving
supporting evidence. The local implementation allows us to
efficiently scale up to large numbers of candidate answers per
question, at which point the performance of a web
implementation would not be acceptable.
Work on scoring candidate answers in passages using

syntax and/or semantics has been largely separated from
work on answer validation using a secondary search;
the inputs to semantic passage scoring have been, generally,
passages from a single primary search using the original
question terms, not additional passages separately retrieved
for each candidate. Work of this sort includes structural
distance [19], parse tree similarity [20, 21], and logical form
unification [6].
There is also a very substantial body of work in scoring

passages for relevance to a query, e.g., [22–24].
This task is not quite the same as scoring a specific candidate
answer, but there is a considerable overlap in the kinds
of techniques that are relevant to these tasks. There are
three general differences between established algorithms
for ranking retrieved passages and the passage scorer
approach we describe in this paper.

1. We use a set of passage-scoring algorithms that each
provide a distinct score that is used by the final merger
as a feature in statistically judging whether each answer
is correct. Most existing passage-scoring work uses a
single algorithm. An assortment of scorers is combined
through voting in [25]; that differs from our approach
both in that the combination does not use statistics
to weigh the contribution of the different algorithms

and in that the results are locally combined as part
of the passage-ranking task instead of being combined
with a broader set of features to determine answers
to questions.

2. All of our scorers, except Passage Term Match, attempt
to align the question focus to a designated candidate
answer. With that said, however, both Textual Alignment
and Skip-Bigram are able to operate (with some minor
degradation in effectiveness) without a focus to align
to. We would expect that they could be used to rank
passages with little or no revision.

3. Our scorers are applied to an assortment of passages
for each candidate answer with results aggregated across
multiple passages for a single answer, as described in the
section BMerging across passages.[ This is a distinction
on how these components are used that suggests
substantially different criteria for judging effectiveness.
For example, the combined Passage Term Match score
across many passages for a single answer is an effective
mechanism for judging answer correctness because the
right answer tends to co-occur with terms from the
question more often than wrong answers do. This does not
necessarily suggest that the Passage Term Match score
is a particularly useful feature for judging whether any
one passage answers the question. Thus, while some
of our scorers could be used to rank passages, we have
no direct evidence that they would be particularly
effective at that task.

Given an annotated set of examples of passages that do
or do not provide justification for some answer being correct,
it is possible to build a classifier to distinguish among these
passages; one promising approach for doing so is kernel
methods [26, 27]. Identifying justifying passages in order
to persuade a user that some answer is accurate is essential
for many real-world applications of question-answering
technology. Thus, we expect this goal to be important in
our future work. Some combination of the algorithms
described here and established techniques such as kernel
methods may address this task well.
The use of a harmonic mean of match scores in

Skip-Bigram can be compared and contrasted with many
systems that combine scores of various types of match.
Vector-based approaches such as term frequency-idf (tf-idf)
are popular for combining match scores for large amounts
of text such as full documents. For smaller amounts of
text such as the supporting passages in DeepQA, harmonic
mean has been employed for a wide variety of tasks such
as translation [28, 29], text summarization [30], and complex
question answering with sentence-length answers [31]. Our
Skip-Bigram scorer provides a novel combination of this
established mathematical foundation with the use of both
syntactic and semantic relations to find connected or nearly
connected pairs of terms.
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The Waterman–Smith algorithm used in Textual
Alignment is also widely used for bioinformatics [32].
Unlike these applications, we utilized our knowledge of
word frequency to gauge the impact of a term match
or mismatch in the form of idf weights.
The core concept of LFACS is answering questions by

aligning a graph encoding of the semantics of the question
to a graph encoding of the semantics of content containing
a potential answer. This approach is relatively common
in question answering. In some cases, links in the graph
are deep semantic relations in a handcrafted ontology
(e.g., [33–35]). In others, links are syntactic relations in
a parse or PAS (e.g., [6, 20, 36]). As noted earlier, LFACS
uses hybrid syntactic–semantic graphs that combine these
two approaches. Some of the aforementioned systems
(e.g., [6]) use theorem-proving technology to Bprove[ that
the answer satisfies the requirements of the logical form of
the question given the logical form of the passage. These
systems treat the node-edge-node triples as logical assertions
where each edge label is a logical predicate and the nodes
are the instances being predicated. LFACS takes a similar
but not identical perspective; specifically, it attempts to
match the graphs structurally.
The theorem-proving approach allows the reasoner to infer

additional assertions (i.e., additional edges in the graph)
during matching in a goal-directed way. For example, as
noted earlier, natural-language axioms [6] serve a similar
function as our shallow semantic relations. Those axioms
are applied as needed by the theorem prover to relate a
passage to a question, whereas our semantic relation
detection is run separately on the question and the passage
before running the scorers. In theory, this distinction could
provide some benefits to theorem proving in efficiency
(since it needs to apply only those axioms that are needed
to do unification) or even expressive power. However,
we are not aware of any shallow semantic relations (either
in our set or in the examples reported in [6]) for which it is
not feasible to simply apply them as a preprocessing step.
Matching is a more natural paradigm than theorem proving

for a component that provides partial credit for an incomplete
alignment. This capability is extremely important in
Jeopardy! (as in many real-world applications) because
Jeopardy! clues are often complex and multifaceted.
Theorem proving is generally an all-or-nothing technology,
and systems that use theorem proving to align questions
to passages typically only consider whether the content
in the passage is able to prove all of the content requested
in the question. This is feasible for extremely simple
questions but is generally a poor fit for questions as
complex as those found in Jeopardy! and many real-world
applications. It would be possible to use a theorem prover
as part of a system that provided partial credit, e.g., by
treating different subgraphs of the question as distinct queries
and scoring based on how many of those subgraphs can be

proven. However, this seems awkward and potentially
inefficient. Matching graph structures seems like a more
useful perspective than theorem proving when the goal is
to compute a degree of match.
A structural-matching approach is employed in [35]

for answering questions from a knowledge-base using a
Bsimilarity strategy,[ in which characteristics of one entity
are hypothesized to apply to similar entities. That work
uses structure mapping [37] to judge similarity of entities.
The structural-matching algorithm in LFACS is also a
form of structure mapping, but the task of matching
syntactic–semantic graphs of question and passage text
is very different from the task of matching entities in a
formal knowledge-base.

Conclusion
We have shown that our suite of passage-scoring strategies
has a significant impact on our ability to answer questions.
We have further shown that this suite is more effective
than any of its constituents. The four algorithms we describe
here use different kinds of analyses to assess answers
within passages and thus can draw different conclusions.
For example, Skip-Bigram and LFACS use the graph
structure, which can be helpful when the analysis
components [4, 5] are correct and useful passages are
similarly structured to questions; Passage Term Match
and Textual Alignment do not benefit from the graph
structure but are therefore never misled by it. Additional
passage-scoring algorithms would also be helpful if they
were meaningfully different from the existing algorithms.
However, the more passage-scoring algorithms that a system
has, the less room there is for additional algorithms to
squeeze additional signal out of the same passages.
We have demonstrated that a question-answering system

that performs analysis of passages can significantly benefit
from an SER phase that uses the candidate answer as part
of the query. We have also shown that our passage-scoring
algorithms are more effective given passages from SER than
they are when limited to passages retrieved by DeepQA’s
primary search. The SER approach has the downside of being
very slow to execute as it requires executing one search
query per candidate answer. DeepQA employs a parallel
deployment of this system, which can process the candidate
answers concurrently across a cluster of machines [38]. As a
result, Watson benefits from acquiring and scoring supporting
passages and is still able to answer questions very quickly.
We observed that one of our strategies, LFACS, is less

effective than the others in isolation but is among the most
effective when included in the full suite. LFACS is a very
complex scoring component that makes very fine-grained
distinctions. Furthermore, LFACS is heavily dependent on
relation extraction, which is very challenging to do well.
The LFACS approach seems like a poor choice for building
a simple inexpensive system to do question answering
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moderately well; it is very expensive to get much
effectiveness out of LFACS, and developers with limited
resources can get more impact much more easily from a
scorer such as Passage Term Match, which is cheap and easy
to implement. However, as a question-answering system
becomes more complex and sophisticated, the potential
for very shallow approaches to have additional impact
becomes increasingly thin. As a result, the need for a deeper
analysis that makes more complex distinctions increases.
Complex passage-scoring algorithms such as LFACS do
provide a substantial value when included as part of a more
comprehensive suite. In future work, we expect algorithms
such as LFACS that use deep analysis results to make
relatively subtle distinctions to be an increasingly important
part of our research agenda.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries,
or both.

**Trademark, service mark, or registered trademark of Jeopardy
Productions, Inc., or Wikimedia Foundation in the United States,
other countries, or both.
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