

Game Algorithms
Go and MCTS

Petr Baudiš, 2013

Outline

● Rehash: MCTS and bandits
● Enhancing the MC simulations
● Enhancing the tree search
● Automatic pattern extraction
● Information sharing
● Unsolved problems

Monte Carlo Tree Search

Multi-armed Bandit

● => Multi-armed bandit
● Each node has urgency based

on value and exploration desire
● Urgency policy: Minimize

regret – expected total loss
of selecting suboptimal nodes

● Several approaches: ε-greedy,
upper confidence bounds

Upper Confidence Bound

● urgency = value + bias
● value = expectation = wins / simulations
● bias = UCB1 (Auer, 2002)

upper bound on possible value

● c is parameter; best for random Go ~0.2
● Optimistic strategy – try most promising node

√c ln(n0)

n

In
co

n s
is

te
nt

 fo
rm

al
is

m
s

Better Simulations

Basic Implementation

Trivial Heuristics

Local Patterns

Caveats!

Uniformly Random...

● In each move, pick a random element from
the set of legal moves \ pass

● Never fill single-point eyes
● Common termination rule:

– Pass only if no valid move remains
– => Easy + fast counting
– Mercy rule

appendix 4

Playout Requirements

● Speed – more simulations mean deeper tree
and more accurate values

– Small board, light playouts: Tens of
thousands playouts per second

– Large board, heavy playouts: ~2000 pPs
● Plausibility – situations should be resolved like

in a real game

 X
● Balance – all reasonable results should have

the chance to appear in playouts (x policy drift)

Simple Heuristics

● Hard to find heuristics that don't fail often
● Capture stones in atari vs. escape with stones

in atari (possibly detect ladders)
– Except when the stones cannot escape

● Do not self-atari – but sometimes do!
– Putting large group in atari instead of

connecting is bad
– Self-atari of your stones in opponent's

dead eyespace is necessary
● 2-liberty tactics similar to atari tactics

3x3 Patterns

● ~10 wildcard 3x3 patterns centered at the
candidate move (Gelly, 2006)

● Check only around last move; play on match
● => Produces “nice” local sequences
● 3x3 patterns = 16bit numbers => Very fast
● Optional: atari info in four directions (+4 bits)

appendix 5

Balanced Patterns

● Stronger playout is not better playout!
– Imbalance => consistently biased

assessment of position, UCT misbehaves
● Fresh approach – machine learning of patterns

based on playout balance, not strength
– (Silver, 2009) Don't minimize error but

expected error – error over multiple
moves in row (small mistakes cancel)

– (Huang, 2010) Works on 19x19 too

Better Tree Search

Prior Node Values

All Moves As First

Rapid Action EValuation

Criticality

Dynamic komi

Multithreaded Search

Time Management

Fresh Nodes

● UCT: Play each node once first – too ineffective
● First Play Urgency: Initialize urgency with

fixed value (~1.2), start UCB-selecting nodes
● “Progressive widening”, initialize value

heuristically
● “Progressive unpruning”, rank nodes

heuristically, consider only f(n) best nodes

Prior Values

● Priors:
– Playout policy hinting – capture, atari,

3x3 patterns, eye filling
– Distance from the board border
– CFG distance from the last move
– Smart static evaluation function

Common Fate Graph

(Graepel, 2001)
● Intersections: vertices, lines: edges
● Edges between same color: d=0, others: d=1
● CFG distance: the shortest path in CFG

– Useful for the concept of “tactical locality”
– Takes into account all moves affecting

local groups

All Moves As First

● UCT converges very slowly, especially on large
boards – no information sharing

● Idea: Find out and prefer moves that give good
performance in all games (Bruegmann, 1993)

● UCT value of M: Winrate of games starting by M
● AMAF value of M: Winrate of games where we

played M anytime in the rest of the game(!)
● Moves in-tree and in most of the playout are

considered (late moves cut, or weighing)

Rapid Action Evaluation

● How to incorporate AMAF in the node value?
(Gelly & Silver, 2007)

● value = β × amafval + (1-β) × uctval

● With small uctsims, β ~ 1, but goes → 0
● r: RAVE weight (“equivalence”) parameter,

e.g. ~3000

=amafsims×amafsimsuctsimsamafsims×uctsimsr
−1

RAVE Aftermath

● Key result in MCTS Go, making it stronger
than the classical engines:

– ~ 30% UCT 70% UCT-RAVE→
● Good playout policy is crucial for good AMAF!
● Priors: amafval vs uctval – small difference

– Important new prior: “Even game” p=0.5
protects against inaccurate first results

● No exploration: Best results with c=0 on 19x19
(c=~0.005 on 9x9) – AMAF is sufficiently noisy

● Alternatives exist, though

RAVE Performance

Parallel MCTS

● Root-level
● Leaf-level
● In-tree

Parallel MCTS

(Chaslot, 2008)
● Root-level – independent search in each

thread, merge at the end
– Threads “vote” on best move
– Slight-to-medium improvement,

does not seem to scale much
● Leaf-level – single thread searches, all threads

play in parallel
– More accurate node value
– Small improvement, large overhead

Parallel MCTS in-tree

● In-tree – all threads search in the same tree
– No locking necessary if we are careful

(Enzenberger, 2009)
– Never delete nodes during search
– Update values atomically
– Virtual loss spreads exploration (add loss

in descend, remove during update)

Distributed MCTS

● Distributed – cluster of machines (nodes) with
separate trees

● Independent searches + information exchange
● Information exchange = higher overhead
● Best: Little exchange, e.g. only single level
● Virtual wins (Baudiš and Gailly, 2011)

Parallel Performance
(19x19 vs Fuego)

Time Management

● How to allocate time during the game?
● Main time, overtime n periods of m moves
● Pachi: Default and maximal time,

unclear results imply overspending
● Allocate most time in the “middle game”

Learning Patterns

Pattern Features

ELO Pattern Ranking

Storing Patterns

Pattern Usage

Pattern Usage

● Wildcard 3x3
centered patterns:
see before

● Circular n-radius
patterns – hash
matching

● Arbitrarily shaped
patterns: incremental
decision trees

● Shape matching only
● Tactical goal matching
● Point owner matching

● Used both in playouts
(simplified) and
in priors (full
features set)

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)
● Initialization: Each point gets assigned random

numbers b, w
● Position: XOR of b values for all black stones

and w values for all white stones
● Good uniform distribution, reasonable hash size
● Incremental updates on move plays possible!

Shape Patterns

● Represented as Zobrist hashes of the area
– All rotations and color reversals
– Matching can be incremental for

multiple shape sizes
– Lookup is very fast

● Extended board with special “edge color” -
already common in fast board implementations

Circular Shapes

● ...on square grid?
(Stern, 2006)

● Metric?

Circular Shapes

● ...on square grid?
(Stern, 2006)

● Metric:

d(x,y) = |dx| + |dy|
 + max(|dx|,|dy|)

● Incrementally matched
nested circles

● Commonly used

Arbitrary Shapes

● Hard to recognize and harvest automatically,
useful mostly for expert patterns

● Use probably uncommon

Arbitrary Shapes

● Hard to recognize and harvest automatically,
useful mostly for expert patterns

● Use probably uncommon
● Proposed method: Incremental Patricia trees

(Boon, 2009)
– Build a decision tree (node-per-

intersection) from the patterns
– For each intersection, store nodes from

decision trees
– When the point changes, re-walk branch

Pattern Features

● For each candidate move, a pattern is matched:
● Shape – as just described
● Capture, atari, selfatari, liberty counts, ko...

(van der Werf, 2002)
● Distance to the last, next-to-last move

– CFG distance or circular distance
● Monte Carlo owner – portion of simulations

where I am point owner at the game end
● Each feature can have its zobrist hash

Naive Pattern Probability

● Simple but powerful idea – just ignore all
pattern context (MoyoGo - de Groot, 2005)

● Pattern for each spatial context occuring at
least twice; use largest context available

● Pattern play probability is probability that a
pattern is played when it is available to play

● Use pat. play prob. for probability distribution
● More complex models (except Elo) not so

successful; speed and model suitability?

Elo Ratings

● Elo: Putting competitive strength of many
individuals on a single scale (Elo, 1978)

● Used in Chess and Go to rate players strength
● Based on Bradley-Terry model:

– Each individual has strength γ

– P(i beats j) = γ
i
 / (γ

i
 + γ

j
)

● Works for competition of >2 players too

● Works for teams: γ
1
γ

3
 / (γ

1
γ

2
γ

3
 + γ

1
γ

2
 + γ

1
γ

3
)

● Makes rather strong assumptions

Elo Patterns

● Key result: 38.2% 90% → (Coulom, 2007)
● Consider teams of pattern features, assign each

feature its “strength”
– capture=30, atari=1.7 self-atari=0.06

● Total strength of each intersection is product of
the features strength

● Produces probability distribution over moves
● Use to choose the next move in playout; only

easy features (e.g. shapes up to 3x3) are used
● Use to progressively unprune nodes

Current Programs

● Mogo – UCT pioneer
● CrazyStones – Elo
● ManyFaces – UCT+classic
● Zen – Elo reimplemented?
● Erica – Elo + Balancing

Opensource UCT:
● Fuego – complex, general
● Pachi – simple, Go focus

State of Computer Go

● 1998: Jean-loup Gailly 5k won 17-handi
● March 2012: Takemiya Masaki 9p lost giving

5 and 4 stones to Zen
● Bonn 2012: Motoki Noguchi 6d lost 0-2 on 9x9,

1-1 on 13x13 against Zen
● Bonn 2012: Catalin Taranu 5p 1-1 on 19x19

giving 4 stones to CrazyStone
● KGS (blitz): Zen19D 6d; CrazyStone 5d;

GinseiIgo 5d; Pachi2 4d

http://computer-go.info/

Pachi

● Densely-commented C code, about 17k LOC
● Modular architecture for play engines

(random, playout, MonteCarlo, UCT)
● Modular architecture for UCT policies

(UCB1, UCB1AMAF/RAVE)
● Modular architecture for playout policies

(random, “Moggy”, probability distribution)
● Modular dynamic komi policy, priors, etc.
● Autotest – generic UNIX framework for testing

of stochastic engines performance

Information Sharing

● RAVE
● Dynamic komi
● Narrow sequence problem:

– Criticality
– Liberty maps
– Local trees?

Playing in Extreme
Situations

● Extreme situation: The computer has either
a huge advantage or a huge disadvantage

● Common in handicap games
● Black: big advantage – suboptimal moves,

no account for difference in strength
● White: big disadvantage – the problem is not

so visible and harder to solve
● Interpretation: Too low signal-noise ratio when

the outlook is extreme

Black in Handicap

● Linear dynamic komi, situational dynamic komi,
artificial passes

● Dynamic komi: Before counting the final
position in the simulation, subtract a certain
amount of points from black score
(Baudiš, 2011)

● Situational komi: Adjust the komi to keep
probabilities between ~[0.4,0.5]; universal
(not only handicap games), ~57% self-play

– Fixed step or avgscore-based step

Linear Dynamic Komi

● Linear DK: Calculate komi value K based on
the handicap amount

● K ~= -cH where c is point value of handi stone
– c=8 (based on default komi value)

seems optimal; non-linear scaling
experiments discouraging

● Apply for first M moves: k = K(1-m/M)
● M=200 works well on 19x19
● Adaptive: Keep winrate between 0.85 and 0.8

Handicap Performance
(19x19 vs GNUGo level 10)

Criticality

● Focus on places that are “key” for both players
– the point is important for winning the game

● Similar to AMAF, but statistical covariance
of winrates for both players

● How to use it? Patterns (Coulom, 2009),
another UCB term (Pellegrino, 2009) or
proportional virtual AMAF wins (Baudiš, 2012)

● Small improvement (49% 54%)→

v (x)
N

−(w(x)
N

W
N

+
b(x)
N

B
N)

Liberty Maps

● Playout heuristics suggest a set of moves to
choose from in given situation

● Collect statistics of expected local value of such
moves, we want to prefer good ones

● Sharing statistics between different situations:
liberty map of the local group (Baudiš, 2012)

● How to use the statistics?
– Random move with eff. over threshold
– Bandits! Use UCB to choose move in sim.

Followup moves: Tree-like structure

Local Trees

● A pair of trees (black, white) of all non-tenuki
sequences

● Parallel descent of main and local trees; way to
share information about solutions of local
situations?

● Using information: Local sequence forcing?
● Still in research...

Unsolved Problems

Narrow sequences

HPC implementation

Aesthetically
pleasing play

Abstract understanding
of the board

Narrow Sequences

● The most visible and probably most important
current issue

● UCT/RAVE bots miserably fail in most semeai
situations, some classes of unsettled tsumego
and sometimes even misread simple ladders

● RAVE gives single-level information, same
problem as Monte Carlo vs UCT

Narrow Sequences:
The Problem

● General situation description: After one player's
move X, the other player has one right reply Y*
(winrate converges) and many wrong replies
{Y-} (winrate diverges)

● All replies have equal simulation probability,
giving player's move X too high winrate

● Thus, RAVE gives the move massive bias
everywhere in the tree; tree quickly discovers
Y*, but this only pushes X down in tree

Narrow Sequences:
Solutions?

● Common: Enhance simulations to natively
choose Y* after X with high probability

– Simulations must be fast, only static
evaluation reasonably possible,
case-by-case, tedious

● Prefer best local moves found by tree search in
simulations?

● Pre-bias node values based on local sequences
found in other tree branches?

● Preliminary results promising, still researching

High Performance
Computing

● Big clusters tried – Mogo on 900 cores etc.
● Mix of root and tree parallelization
● Scaling limits: overhead, limited information

sharing
● GPGPU needs a lot of research, preliminary

experiments not too encouraging
– Game parallelization – playout / thread
– Point parallelization – intersection / thread

Aesthetically Pleasing Play

● Computers like to play “strange-looking” moves
● Unclear if solving these problems would

improve win rate
● Playing opening moves very far from the edge
● Playing suboptimal moves at the game end

when win is secured

Abstract Understanding

● Useful since simulations cannot be deep enough
to assess true values of some aspects

● E.g. solidness of territory and groups,
thickness value, ko fights status, latent aji

● Maybe ManyFaces does it to a degree,
no published results; can be obsoleted
by narrow sequences solution

● Describe point/chain dynamics as polynomial
system (nice prediction results, in research –
Wolf, 2009 preprint)

Thank you!

pasky@ucw.cz
http://pasky.or.cz/go/

http://senseis.xmp.net/

http://gokgs.com/
http://computer-go.org/

http://www.citeulike.org/group/5884/library

mailto:pasky@ucw.cz
http://senseis.xmp.net/
http://computer-go.org/
http://www.citeulike.org/group/5884/library

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

