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Outline

● Rehash: MCTS and bandits
● Enhancing the MC simulations
● Enhancing the tree search
● Automatic pattern extraction
● Information sharing
● Unsolved problems



  

Monte Carlo Tree Search



  

Multi-armed Bandit

● => Multi-armed bandit 
● Each node has urgency based

on value and exploration desire
● Urgency policy: Minimize

regret – expected total loss
of selecting suboptimal nodes

● Several approaches: ε-greedy,
upper confidence bounds



  

Upper Confidence Bound

● urgency = value + bias
● value = expectation = wins / simulations
● bias = UCB1 (Auer, 2002)

upper bound on possible value

● c is parameter; best for random Go ~0.2
● Optimistic strategy – try most promising node
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Better Simulations

Basic Implementation

Trivial Heuristics

Local Patterns

Caveats!



  

Uniformly Random...

● In each move, pick a random element from
the set of legal moves \ pass

● Never fill single-point eyes
● Common termination rule:

– Pass only if no valid move remains
– => Easy + fast counting
– Mercy rule

appendix 4



  

Playout Requirements

● Speed – more simulations mean deeper tree 
and more accurate values

– Small board, light playouts: Tens of 
thousands playouts per second

– Large board, heavy playouts: ~2000 pPs
● Plausibility – situations should be resolved like 

in a real game

                             X
● Balance – all reasonable results should have 

the chance to appear in playouts (x policy drift)



  

Simple Heuristics

● Hard to find heuristics that don't fail often
● Capture stones in atari vs. escape with stones 

in atari (possibly detect ladders)
– Except when the stones cannot escape

● Do not self-atari – but sometimes do!
– Putting large group in atari instead of 

connecting is bad
– Self-atari of your stones in opponent's 

dead eyespace is necessary
● 2-liberty tactics similar to atari tactics



  

3x3 Patterns

● ~10 wildcard 3x3 patterns centered at the 
candidate move (Gelly, 2006)

● Check only around last move; play on match
● => Produces “nice” local sequences
● 3x3 patterns = 16bit numbers => Very fast
● Optional: atari info in four directions (+4 bits)

appendix 5



  

Balanced Patterns

● Stronger playout is not better playout!
– Imbalance => consistently biased 

assessment of position, UCT misbehaves
● Fresh approach – machine learning of patterns 

based on playout balance, not strength
– (Silver, 2009) Don't minimize error but 

expected error – error over multiple 
moves in row (small mistakes cancel)

– (Huang, 2010) Works on 19x19 too



  

Better Tree Search

Prior Node Values

All Moves As First

Rapid Action EValuation

Criticality

Dynamic komi

Multithreaded Search

Time Management



  

Fresh Nodes

● UCT: Play each node once first – too ineffective
● First Play Urgency: Initialize urgency with 

fixed value (~1.2), start UCB-selecting nodes
● “Progressive widening”, initialize value 

heuristically
● “Progressive unpruning”, rank nodes 

heuristically, consider only f(n) best nodes



  

Prior Values

● Priors:
– Playout policy hinting – capture, atari,

3x3 patterns, eye filling
– Distance from the board border
– CFG distance from the last move
– Smart static evaluation function



  

Common Fate Graph

(Graepel, 2001)
● Intersections: vertices, lines: edges
● Edges between same color: d=0, others: d=1
● CFG distance: the shortest path in CFG

– Useful for the concept of “tactical locality”
– Takes into account all moves affecting 

local groups



  

All Moves As First

● UCT converges very slowly, especially on large 
boards – no information sharing

● Idea: Find out and prefer moves that give good 
performance in all games (Bruegmann, 1993)

● UCT value of M: Winrate of games starting by M
● AMAF value of M: Winrate of games where we 

played M anytime in the rest of the game(!)
● Moves in-tree and in most of the playout are 

considered (late moves cut, or weighing)



  

Rapid Action Evaluation

● How to incorporate AMAF in the node value?
(Gelly & Silver, 2007)

● value = β × amafval + (1-β) × uctval

● With small uctsims, β ~ 1, but goes → 0
● r: RAVE weight (“equivalence”) parameter,

e.g. ~3000

=amafsims×amafsimsuctsimsamafsims×uctsimsr 
−1



  

RAVE Aftermath

● Key result in MCTS Go, making it stronger 
than the classical engines:

– ~ 30% UCT  70% UCT-RAVE→
● Good playout policy is crucial for good AMAF!
● Priors: amafval vs uctval – small difference

– Important new prior: “Even game” p=0.5 
protects against inaccurate first results

● No exploration: Best results with c=0 on 19x19 
(c=~0.005 on 9x9) – AMAF is sufficiently noisy

● Alternatives exist, though



  

RAVE Performance



  

Parallel MCTS

● Root-level 
● Leaf-level 
● In-tree



  

Parallel MCTS

(Chaslot, 2008)
● Root-level – independent search in each 

thread, merge at the end
– Threads “vote” on best move
– Slight-to-medium improvement,

does not seem to scale much
● Leaf-level – single thread searches, all threads 

play in parallel
– More accurate node value
– Small improvement, large overhead



  

Parallel MCTS in-tree

● In-tree – all threads search in the same tree
– No locking necessary if we are careful 

(Enzenberger, 2009)
– Never delete nodes during search
– Update values atomically
– Virtual loss spreads exploration (add loss 

in descend, remove during update)



  

Distributed MCTS

● Distributed – cluster of machines (nodes) with 
separate trees

● Independent searches + information exchange
● Information exchange = higher overhead
● Best: Little exchange, e.g. only single level
● Virtual wins (Baudiš and Gailly, 2011)



  

Parallel Performance
(19x19 vs Fuego)



  

Time Management

● How to allocate time during the game?
● Main time, overtime n periods of m moves
● Pachi: Default and maximal time,

unclear results imply overspending
● Allocate most time in the “middle game”



  

Learning Patterns

Pattern Features

ELO Pattern Ranking

Storing Patterns

Pattern Usage



  

Pattern Usage

● Wildcard 3x3 
centered patterns: 
see before

● Circular n-radius 
patterns – hash 
matching

● Arbitrarily shaped 
patterns: incremental 
decision trees

● Shape matching only
● Tactical goal matching
● Point owner matching

● Used both in playouts 
(simplified) and
in priors (full
features set)



  

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)



  

Zobrist Hashing

● Hashing board positions (Zobrist, 1990)
● Initialization: Each point gets assigned random 

numbers b, w
● Position: XOR of b values for all black stones 

and w values for all white stones
● Good uniform distribution, reasonable hash size
● Incremental updates on move plays possible!



  

Shape Patterns

● Represented as Zobrist hashes of the area
– All rotations and color reversals
– Matching can be incremental for

multiple shape sizes
– Lookup is very fast

● Extended board with special “edge color” - 
already common in fast board implementations



  

Circular Shapes

● ...on square grid?
(Stern, 2006)

● Metric?



  

Circular Shapes

● ...on square grid?
(Stern, 2006)

● Metric:

d(x,y) = |dx| + |dy| 
   + max(|dx|,|dy|)

● Incrementally matched 
nested circles

● Commonly used



  

Arbitrary Shapes

● Hard to recognize and harvest automatically, 
useful mostly for expert patterns

● Use probably uncommon



  

Arbitrary Shapes

● Hard to recognize and harvest automatically, 
useful mostly for expert patterns

● Use probably uncommon
● Proposed method: Incremental Patricia trees 

(Boon, 2009)
– Build a decision tree (node-per-

intersection) from the patterns
– For each intersection, store nodes from 

decision trees
– When the point changes, re-walk branch



  

Pattern Features

● For each candidate move, a pattern is matched:
● Shape – as just described
● Capture, atari, selfatari, liberty counts, ko...

(van der Werf, 2002)
● Distance to the last, next-to-last move

– CFG distance or circular distance
● Monte Carlo owner – portion of simulations 

where I am point owner at the game end
● Each feature can have its zobrist hash



  

Naive Pattern Probability

● Simple but powerful idea – just ignore all 
pattern context (MoyoGo - de Groot, 2005)

● Pattern for each spatial context occuring at 
least twice; use largest context available

● Pattern play probability is probability that a 
pattern is played when it is available to play

● Use pat. play prob. for probability distribution
● More complex models (except Elo) not so 

successful; speed and model suitability?



  

Elo Ratings

● Elo: Putting competitive strength of many 
individuals on a single scale (Elo, 1978)

● Used in Chess and Go to rate players strength
● Based on Bradley-Terry model:

– Each individual has strength γ

– P(i beats j) = γ
i
 / (γ

i
 + γ

j
)

● Works for competition of >2 players too

● Works for teams: γ
1
γ

3
 / (γ

1
γ

2
γ

3
 + γ

1
γ

2
 + γ

1
γ

3
)

● Makes rather strong assumptions



  

Elo Patterns

● Key result: 38.2%  90% → (Coulom, 2007)
● Consider teams of pattern features, assign each 

feature its “strength”
– capture=30, atari=1.7 self-atari=0.06

● Total strength of each intersection is product of 
the features strength

● Produces probability distribution over moves
● Use to choose the next move in playout; only 

easy features (e.g. shapes up to 3x3) are used
● Use to progressively unprune nodes



  

Current Programs

● Mogo – UCT pioneer
● CrazyStones – Elo
● ManyFaces – UCT+classic
● Zen – Elo reimplemented?
● Erica – Elo + Balancing

Opensource UCT:
● Fuego – complex, general
● Pachi – simple, Go focus



  

State of Computer Go

● 1998: Jean-loup Gailly 5k won 17-handi
● March 2012: Takemiya Masaki 9p lost giving

5 and 4 stones to Zen
● Bonn 2012: Motoki Noguchi 6d lost 0-2 on 9x9,

1-1 on 13x13 against Zen
● Bonn 2012: Catalin Taranu 5p 1-1 on 19x19 

giving 4 stones to CrazyStone
● KGS (blitz): Zen19D 6d; CrazyStone 5d; 

GinseiIgo 5d; Pachi2 4d

http://computer-go.info/



  

Pachi

● Densely-commented C code, about 17k LOC
● Modular architecture for play engines

(random, playout, MonteCarlo, UCT)
● Modular architecture for UCT policies

(UCB1, UCB1AMAF/RAVE)
● Modular architecture for playout policies 

(random, “Moggy”, probability distribution)
● Modular dynamic komi policy, priors, etc.
● Autotest – generic UNIX framework for testing 

of stochastic engines performance



  

Information Sharing

● RAVE
● Dynamic komi
● Narrow sequence problem:

– Criticality
– Liberty maps
– Local trees?



  

Playing in Extreme 
Situations

● Extreme situation: The computer has either
a huge advantage or a huge disadvantage

● Common in handicap games
● Black: big advantage – suboptimal moves,

no account for difference in strength
● White: big disadvantage – the problem is not 

so visible and harder to solve
● Interpretation: Too low signal-noise ratio when 

the outlook is extreme



  

Black in Handicap

● Linear dynamic komi, situational dynamic komi, 
artificial passes

● Dynamic komi: Before counting the final 
position in the simulation, subtract a certain 
amount of points from black score
(Baudiš, 2011)

● Situational komi: Adjust the komi to keep 
probabilities between ~[0.4,0.5]; universal
(not only handicap games), ~57% self-play

– Fixed step or avgscore-based step



  

Linear Dynamic Komi

● Linear DK: Calculate komi value K based on 
the handicap amount

● K ~= -cH where c is point value of handi stone
– c=8 (based on default komi value)

seems optimal; non-linear scaling 
experiments discouraging

● Apply for first M moves: k = K(1-m/M)
● M=200 works well on 19x19
● Adaptive: Keep winrate between 0.85 and 0.8



  

Handicap Performance
(19x19 vs GNUGo level 10)



  

Criticality

● Focus on places that are “key” for both players 
– the point is important for winning the game

● Similar to AMAF, but statistical covariance
of winrates for both players

● How to use it? Patterns (Coulom, 2009), 
another UCB term (Pellegrino, 2009) or 
proportional virtual AMAF wins (Baudiš, 2012)

● Small improvement (49%  54%)→

v (x)
N

−(w(x )
N

W
N

+
b( x)
N

B
N )



  

Liberty Maps

● Playout heuristics suggest a set of moves to 
choose from in given situation

● Collect statistics of expected local value of such 
moves, we want to prefer good ones

● Sharing statistics between different situations: 
liberty map of the local group (Baudiš, 2012)

● How to use the statistics?
– Random move with eff. over threshold
– Bandits! Use UCB to choose move in sim.

Followup moves: Tree-like structure



  

Local Trees

● A pair of trees (black, white) of all non-tenuki 
sequences

● Parallel descent of main and local trees; way to 
share information about solutions of local 
situations?

● Using information: Local sequence forcing?
● Still in research...



  

Unsolved Problems

Narrow sequences

HPC implementation

Aesthetically
pleasing play

Abstract understanding
of the board



  

Narrow Sequences

● The most visible and probably most important 
current issue

● UCT/RAVE bots miserably fail in most semeai 
situations, some classes of unsettled tsumego 
and sometimes even misread simple ladders

● RAVE gives single-level information, same 
problem as Monte Carlo vs UCT



  

Narrow Sequences:
The Problem

● General situation description: After one player's 
move X, the other player has one right reply Y* 
(winrate converges) and many wrong replies 
{Y-} (winrate diverges)

● All replies have equal simulation probability, 
giving player's move X too high winrate

● Thus, RAVE gives the move massive bias 
everywhere in the tree; tree quickly discovers 
Y*, but this only pushes X down in tree



  

Narrow Sequences: 
Solutions?

● Common: Enhance simulations to natively 
choose Y* after X with high probability

– Simulations must be fast, only static 
evaluation reasonably possible,
case-by-case, tedious

● Prefer best local moves found by tree search in 
simulations?

● Pre-bias node values based on local sequences 
found in other tree branches?

● Preliminary results promising, still researching



  

High Performance 
Computing

● Big clusters tried – Mogo on 900 cores etc.
● Mix of root and tree parallelization
● Scaling limits: overhead, limited information 

sharing
● GPGPU needs a lot of research, preliminary 

experiments not too encouraging
– Game parallelization – playout / thread
– Point parallelization – intersection / thread



  

Aesthetically Pleasing Play

● Computers like to play “strange-looking” moves
● Unclear if solving these problems would 

improve win rate
● Playing opening moves very far from the edge
● Playing suboptimal moves at the game end 

when win is secured



  

Abstract Understanding

● Useful since simulations cannot be deep enough 
to assess true values of some aspects

● E.g. solidness of territory and groups,
thickness value, ko fights status, latent aji

● Maybe ManyFaces does it to a degree,
no published results; can be obsoleted
by narrow sequences solution

● Describe point/chain dynamics as polynomial 
system (nice prediction results, in research – 
Wolf, 2009 preprint)



  

Thank you!

pasky@ucw.cz
http://pasky.or.cz/go/

http://senseis.xmp.net/

http://gokgs.com/
http://computer-go.org/

http://www.citeulike.org/group/5884/library

mailto:pasky@ucw.cz
http://senseis.xmp.net/
http://computer-go.org/
http://www.citeulike.org/group/5884/library
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